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1. INTRODUCTION 
 

Analysis of internal loading at the multiple robotic systems 
has been a hot research area. Walker[1] proposed a weighted 
pseudo-inverse solution that remove an internal loading in 
particular solution. Albert[2] proposed an weighting matrix in 
order to minimize unwanted moment at the grasping space. 
Kumar[8] analyzed an internal loading as interaction force at 
the walking vehicle and the multi-fingered robot, and 
proposed no interaction force condition. Lipkin[6] analyzed 
geometry of the wrench at the optimal distribution and defined 
physical meaning of internal loading using the concept of 
wrench and twist. Nakamura[5] defined an internal loading 
using virtual work principle and optimized an internal loading 
using the condition of the static friction constraint. Cheng[9] 
addressed configuration of two closed chains at the multiple 
robotics system and force balance at the contact point. 
Uchiyama[4] showed the type of the internal loading for the 
two-arm. Nahon[7] used a weighting matrix in order to unify 
the units of force and moment at the algorithm minimizing 
internal loading.  He also minimized internal loading using 
quadratic form and two constraint conditions. Choi[3] 
proposed minimized constraint condition by the quadratic 
form, optimized force distribution using a minimized internal 
loading, but does not describe type of the exact internal 
loading. Zuo[12] addressed the difference between internal 
force and interaction force. So, internal force consists of 
interaction and parallel force at the contact point. Kerr[13] 
described an internal force as grasping force at the 
multi-fingered hands and proposed optimal selection of 
internal grasp force using linear programming. Yoshikawa[11, 
14] defined grasping force that is an internal force satisfying 
the friction constraint and manipulating force, and also 
proposed the virtual truss as a model of the object grasped at n 
contact points. Li[15] proposed the algorithm for three-finger 
force-closure grasp. 

So far, the definition of the internal loading has not been 
classified and generalized. In this paper, we analyze internal 
loading using reduced row echelon method at the triple 
manipulator and show the shape of the internal loading basis. 
We explain the concept of internal force through planar and 
spatial type triple manipulator systems. Three-fingered and 
three-legged systems are illustrated as special cases. 

 
 
 

2. INTERNAL LOADING AT THE TRIPLE 
MANIPULATOR 

 
2.1 Concept of Internal Loading  

The invisible force and moment are exerted on the grasped 
object by the multiple robotic arms. An internal loading is 
defined as the forces and moments that do not affect the 
motion of the end-effector. The relationship between the 
grasping force and moment at the grasping space and the 
operational force and moment at the object space can be 
described as  
P GF= ,                                        (1) 
where 
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iF  denotes the force and moment of the i-th manipulator and 
F  represents the force and moment vector of n  
manipulators. P  denotes the resultant force and moment at 
the object space. Then, the general solution of Eq. (1) can be 
expressed as 

( )F G P I G G ε+ += + − , (5) 

where ε  denotes an arbitrary ( )6 1n × vector, and 
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where 6 6mG R ×∈  and iS denote the transformation matrix 
and a skew symmetric matrix formed with the position vector  

i i i

T

i x y zr r r r =   of the end-effector at the i th manipulator, 

respectively. 3I  and 30 denote 3 by 3 identity and zero 
matrix, respectively. The weighted pseudo-inverse solution 
with row full-rank can be expressed as 

( ) 11 1 6 6T T mG W G GW G R
−+ − − ×= ∈ , (8) 
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where W denotes a weighting matrix. Doty[10] addressed the 
weighted pseudo-inverse for more general case. The first term 
on the right-hand side of Eq. (5) represents a particular 
solution, and the second term denotes a homogenous solution 
that creates internal loading without affecting the motion 
involved in the particular solution. The number of internal 
loadings for a multiple manipulator system consisting of n  
arms is 3 3n× −  in the plane and 6 6n× −  in the space. In 
this paper, the geometry of ( )I G G+−  will be analyzed.  
  
2.2 Internal loading on planar domain  

 
Fig. 1. Triple manipulator in planar domain 

 
When three manipulators rigidly grasp a common object in 

the planar domain, the position vector of each manipulator is 

1 1 1/ 3
T

r  = − −  , 2 1 1/ 3
T

r  = −  , 3 0 2 / 3
T

r  =   . 

The transformation matrix can be expressed as 

1 1 1 1 1 1

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0

1 1 1y x y x y x

G
r r r r r r

 
 =  
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 (9) 

and iF for each manipulator can be expressed as 
T

xi yi zif f n   . Then, the internal loading matrix can be 

obtained as 

0.62 0.08 0.08 0.38 0.08 0.08 0.24 0 0.08
0.08 0.52 0.14 0.08 0.19 0.14 0.17 0.33 0.14
0.08 0.14 0.86 0.08 0.14 0.14 0.17 0 0.14
0.38 0.08 0.08 0.62 0.08 0.08 0.24 0 0.08
0.08 0.19 0.14 0.08 0.52 0.14 0.17 0.33

I G G+− =

− − − − − −
− − −

− − − − −
− − − − − −
− − − − − − −0.14
0.08 0.14 0.14 0.08 0.14 0.86 0.17 0 0.14
0.24 0.17 0.16 0.24 0.17 0.17 0.48 0 0.17
0 0.33 0 0 0.33 0 0 0.67 0

0.08 0.14 0.14 0.08 0.14 0.14 0.17 0 0.86

 
 
 
 
 
 
 
 
− − − − − 
 − − 
 − −
 − − − − −  

. (10) 

This matrix is a 9 by 9 square matrix whose rank is 6. 
Therefore, the dimension of the internal loading basis is 6, and 
by using the row-reduced echelon, the 6 vectors consisting of 
the basis can be obtained as 

[ ]1 0 0 1 0 0 0 0 0 T−  (11) 

[ ]0 1 0 0 1 2 0 0 0 T−  (12) 

[ ]0 0 1 0 0 1 0 0 0 T−  (13) 

[ ]0 0 0 1 0 0 1 0 1.73 T
− −  (14) 

[ ]0 0 0 0 1 0 0 1 1 T− −  (15) 

[ ]0 0 0 0 0 1 0 0 1 T−  (16) 

 
(a) Internal force in the X direction 

 

 
(b) Internal force in the Y direction 

 

 
(c) Internal moment in the Z direction 

 

 
(d) Internal force in the X direction 

 

 
(e) Internal force in the Y direction 

 

 
(f) Internal moment in the Z direction 

Fig. 2. Shape of internal loading basis on the planar domain 
 

X
Y

1F 2F

1r
2r

3r

X
Y

1F 2F
1r

2r

3r

X
Y

1F
2F

1r
2r

3r

X
Y

3F

2F
1r

2r

3r

X
Y

3F

2F
1r

2r

3r

X
Y

3F

2F

1r
2r

3r

X
Y

1F

2F

3F

1r
2r

3r



Fig. 2 (b), (d), and (e) show the internal loading that comes 
from the combination of internal force and moment. If the 
internal force that is symmetric to the referenced coordinate is 
exerted on the ( )i jr r− line, then the moment do not occur. 

However, the internal forces are generally coupled to internal 
moment, while the internal moments occur independently 
because the moment is a free vector. Fig.2 (c) and (f) show the 
case that the internal moments occur independently. 
 
2.3 Internal loading on spatial domain 
 

 
 

Fig. 3. Triple manipulator in spatial domain 
 

When a robotic system consists of three manipulators at 
space, the number of independent internal loading will be 12. 
Analysis of the internal loading for the triple arm has not been 
addressed so far because of the complexity of the internal 
loading. When the positions of the end-effectors for the three 
manipulators are given by 

[ ]1 0 1 0 Tr = − , [ ]2 0 1 0 Tr = , 3 3 0 0
T

r  = −    

and G and F  are given by 
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1 2 3

TT T TF F F F =    ,                            (18) 

then the internal loading matrix ( I G G+− ) can be obtained as 
0.52 0.08 0 0 0 0.14 0.19 0.08 0 0 0 0.14 0.33 0.17 0 0 0 0.14
0.08 0.62 0 0 0 0.08 0.08 0.38 0 0 0 0.08 0 0.24 0 0 0 0.08
0 0 0.4 0.2 0.12 0 0 0 0.2 0.2 0.12 0 0 0 0.2 0.2 0.12 0
0 0 0.2 0.8 0 0 0 0 0.2 0.2 0 0 0 0 0 0.2 0 0
0 0 0.12 0 0.8 0 0 0 0.12 0 0.2 0 0 0 0.

− − − − − − −
− − − − − −

− −
− − −

− − 23 0 0.2 0
0.14 0.08 0 0 0 0.86 0.14 0.08 0 0 0 0.14 0 0.17 0 0 0 0.14
0.19 0.08 0 0 0 0.14 0.53 0.08 0 0 0 0.14 0.33 0.17 0 0 0 0.14
0.08 0.38 0 0 0 0.08 0.08 0.62 0 0 0 0.08 0 0.24 0 0 0 0.08
0 0 0.2 0.2 0.12 0 0 0 0.4 0.2 0.12 0 0 0 0.2 0.2 0.12 0
0 0 0.2

−
− − − − −
− − −
− − − − − −

− − − − −
0.2 0 0 0 0 0.2 0.8 0 0 0 0 0 0.2 0 0

0 0 0.12 0 0.2 0 0 0 0.12 0 0.8 0 0 0 0.23 0 0.2 0
0.14 0.08 0 0 0 0.14 0.14 0.08 0 0 0 0.86 0 0.17 0 0 0 0.14
0.33 0 0 0 0 0 0.33 0 0 0 0 0 0.67 0 0 0 0 0
0.17 0.24 0 0 0 0.17 0.17 0.24 0 0 0 0.17 0 0.48 0 0 0 0.17
0 0 0.2 0 0.23 0 0 0 0.

− − −
− − −

− − − −
− −

− − −
− − − 2 0 0.23 0 0 0 0.4 0 0.23 0

0 0 0.2 0.2 0 0 0 0 0.2 0.2 0 0 0 0 0 0.8 0 0
0 0 0.12 0 0.2 0 0 0 0.12 0 0.2 0 0 0 0.23 0 0.8 0
0.14 0.08 0 0 0 0.14 0.14 0.08 0 0 0 0.14 0 0.17 0 0 0 0.86
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 This matrix is an 18 by 18 square matrix whose rank is 12. 
Therefore, the basis of internal loading consists of 12 vectors, 
and by using row-reduced echelon they can be obtained as 

[ ]1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1T− −  (20) 

[ ]0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1.73T− −  (21) 

[ ]0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1.73 0 T−  (22) 

[ ]0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 T−  (23) 

[ ]0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 T−  (24) 

[ ]0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1T
−  (25) 

[ ]0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 T
−  (26) 

[ ]0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1.73 T−  (27) 

[ ]0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1.73 0 T− −  (28) 

[ ]0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 T−  (29) 

[ ]0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 T−  (30) 

[ ]0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 T−  (31) 
The trends are similar to the planar case. Internal moments 

also independently happen. However, internal forces are 
coupled to internal moments, which are called couple 
moments.  

 
(a) Internal force in the X direction 

 

 
(b) Internal force in the Y direction 

 
(c) Internal force in the Z direction 
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(d) Internal moment in the X direction 

 

 
(e) Internal moment in the Y direction 

 

 
(f) Internal moment in the Z direction 

Fig. 4. Shape of internal loading basis in spatial domain 
 

Fig. 4 shows the shape of the internal loading between the first 
and the third manipulators. The other internal loading can be 
also visualized similarly. 
 

3. Internal force analysis at the three-fingered and 
three-legged systems 

 
We assume that each fingertip makes a point contact, 

offering friction force to the object. Therefore, Eq. (6) is 
transformed as 
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                (32) 

The first term on the right-hand side of Eq. (5) represents the 
manipulating force, and the second term denotes grasping 
force or internal force. Kumar[8] also define those terms as an 
equilibrating force and an interaction force, respectively. The 
equilibrating forces are the forces required to maintain 
equilibrium against an external load, and the interaction force 
must have a zero net resultant. The definition of interaction 
force is similar to internal force. So, the number of internal 
forces or interaction force is 3 6n× − [8,12] if and only if the 
contact points do exist noncolinearly. However, interaction 
forces exist on the ( )i jr r− line, and internal forces can exist 

in any direction on the plane where the contact points are 
coplanar. 

Yoshikawa[14] defined the internal loading by using three 
unit vectors given by  

 
Fig. 5. Internal force 
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where ie is the unit vector directing from iC to 1iC + . Then, 
the internal forces can be constructed by 
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where 1z , 2z , and 3z  are arbitrary real numbers. The 
matrix form of the internal force can be expressed as  

1 12 2

2 21 3

3 31 2

0
0

0

F e e z
F e e z
F e e z

−    
    = −    
    −    

, (35) 

and three internal forces form the closed triangle.  
3.1 Three fingers system  

 
Fig. 6. Three-fingered system 

 
When a three-fingered system contacts a common object, 

the transformation matrix can be expressed as 
3 3 3

1 2 3
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G
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.                               (36) 

The position vectors of the contact point are 
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and the internal force matrix can be obtained as 
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0.58 0.14 0 0.42 0.14 0 0.17 0 0
0.14 0.42 0 0.14 0.08 0 0.29 0.33 0

0 0 0 0 0 0 0 0 0
0.42 0.14 0 0.58 0.14 0 0.14 0 0
0.14 0.08 0 0.14 0.42 0 0.29 0.33 0
0 0 0 0 0 0 0 0 0

0.17 0.29 0 0.17 0.29 0 0.33 0 0
0 0.33 0 0 0.33 0 0 0.67 0
0 0 0 0 0 0 0 0 0

I G G+− =

− − −
 − − −


− − −
− − − −

− − −
− −








 
 
 
 
 
 
 
 
 
 

 (38) 

This matrix is a 9 by 9 square matrix whose rank is 3. 
Therefore, the basis of internal force is 3. Column 3, 6 and 9 
of Eq. (38) has zero value. This is because the plane of the 
contact points is perpendicular to Z axis of the object 
coordinate. By using row-reduced echelon, internal basis can 
be obtained as 

[ ]1 0 0 0 1.73 0 1 1.73 0 T
− −  (39) 

[ ]0 1 0 0 1 0 0 2 0 T
−  (40) 

[ ]0 0 0 1 1.73 0 1 1.73 0 T
− −  (41) 

Eqs. (39) through (41) form a closed force triangle. The 
interaction force can be obtained using the concept of force 
equilibrium at the contact point. From Eq. (35), the z vectors 
corresponding to the internal forces given in Eq. (39) 
through (41) can be obtained as 

[ ]2 0 1 Tz = − , (42) 

2 / 3 2 / 3 1/ 3
T

z  = − −  , (43) 

and 
[ ]2 0 0 Tz = − . (44) 

 
3.2 Three-legged system  

 
Fig. 7. Three-legged system 

 
The concept of internal force at the three-legged system is 

the same as that of three-fingered system, but the difference of 
the concept is the object being grasped. The position vectors 
of the end-point of legs are  

1

2

3

2 2 3 /3 3 ,

2 2 3 / 3 4 ,

0 4 3 /3 4 .

T

T

T

r

r

r

 = − − − 

 = − − 

 = − 

           (45) 

and the internal force matrix can be obtained as 

0.54 0.13 0.15 0.39 0.13 0.12 0.15 0.01 0.04
0.13 0.39 0.09 0.14 0.08 0.02 0.27 0.32 0.11
0.15 0.09 0.05 0.08 0.04 0.03 0.08 0.04 0.03
0.39 0.14 0.08 0.56 0.15 0.12 0.17 0.01 0.04
0.13 0.08 0.04 0.15 0.41 0.02 0.28

I G G+− =

− − − −
− − − − −

− − − −
− − − −
− − − − −0.34 0.02
0.17 0.02 0.03 0.12 0.02 0.03 0 0.05 0.01
0.15 0.27 0.08 0.17 0.28 0 0.32 0.01 0.08
0.01 0.32 0.04 0.01 0.34 0.05 0.01 0.65 0.09
0.04 0.11 0.03 0.04 0.02 0.01 0.08 0.09 0.03

 
 
 
 
 
 
 −
 

− − − − − 
 − − − − − 
 − − − −
 − − − − −  

 (46) 

This matrix is also a 9 by 9 square matrix whose rank is 3. 
Therefore, the basis of internal force is 3, and by using 
row-reduced echelon, the internal forces can be obtained as  

[ ]1 0 0.25 0 1.73 0.25 1 1.73 0 T− − −  (47) 

[ ]0 1 0.14 0 1 0.14 0 2 0.28 T− − −  (48) 

[ ]0 0 0 1 1.73 0 1 1.73 0 T− −  (49) 
The results of Eqs. (47) through (49) show that the internal 
force is similar to that of the three-fingered case. 

 
4. CONCLUSION 

 
An internal loading is defined as the forces and moments 

that do not affect the motion of the end-effecter. The internal 
loading basis has 6 6n× −  independent vectors in the case of 
rigidly grasping manipulation, and 3 6n× −  in case of point 
contact with friction. In this paper, through analysis of the null 
space of the system, various types of the internal loading for 
triple manipulator systems are investigated both in planar and 
spatial domain, and as specific examples, internal forces for 
both three-fingered and three-legged systems are analyzed.  
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