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1. INTRODUCTION 
 
Reinforcement learning shown in Figure 1.1 addresses how 

to choose the optimal sequence of actions to achieve goals 
through iterative processes that agent performs an action in its 
environment and gets a reward for action[4]. 

 

Figure 1.1 Reinforcement Learning 
 
Recently, several types of reinforcement learning 

algorithms have been applied to path planning of a mobile 
robot[8], biomimetics and artificial life[11], analysis of game 
theory[3], packet routing of networks[12], and control of robot 
manipulators[7]. 

Q-learning is one of the most widely used reinforcement 
learning algorithms[5,6]. It can choose an optimal action in 
unknown environment, but has a few defects. First, Q-learning 
algorithm requires many iterations to achieve a goal and needs 
large memories, because the state and action space has been 
implemented by sampling continuous space as a lot of discrete 
states. Several alternative methods have been proposed to 
address this problem where real number reward 
method[14,16], Prioritized Sweeping[15], and region-based 
Q-learning could be included. 

Second problem is “scratch” which could be defined as 
initialization of the Q-table in the beginning of learning. 
Because optimality of a sequence of actions obtained by the 
Q-learning holds only on a given specific problem, for another 
given problem, agent has to learn optimal sequence of actions 
from scratch. The advantage of reinforcement learning is to 
allow the agent to learn approximately optimal solutions of a 
given problem through stochastically similar sweeping 
iterations. Unfortunately, on the other hand, because of this 
stochastic optimal search from scratch, even if the agent, 
which learned optimal solution of a problem previously, has 
been given the same problem, it should take almost same 

number of iterations to learn the Q-table. 
If an agent has a prior knowledge from previously solved 

problems, the agent can speed up learning on new similar 
problems in the sense of reduction of a large number of 
training episodes. Many researchers proposed reinforcement 
learning methods using a priori knowledge such as adaptive 
Q-table method changing the size of Q-table[14], policy reuse 
method using some of previous action functions[13], and 
dyna-Q method using a virtual model of agent environment[4]. 
The studies on integrating advice of agent into neural 
networks for an effective learning, appending advices of 
external observer[1,2,9] or assessing the expertness values of 
other agent knowledge[10] have been suggested as well. 

Most of those methods could speed up learning by using the 
knowledge about environment obtained from previous 
experiences. The reinforcement learning comes simply from 
the Pavlovian conditioning of animal learning, while the 
method to use the knowledge about environment comes from 
the advanced learning; storing something in memories, and 
solving new problem relatively easy based on the memorized 
knowledge[17].  

As research works on reinforcement learning using 
knowledge about environment, there are methods of Maclin 
and Shavlik[9], Singer and Veloso[3], Ahmadabadi and 
Asadpour[10]. Among them, Maclin and Shavlik proposed a 
method which converted advices into statements such as 
if-then conditions, which were stored in a neural network 
named as KBANNs (Knowledge BAsed Neural Networks). 
Here, the advices are made from optimal actions for a domain 
which can be defined by sensing radius. This method enables 
the agent to take advantage of external advices, and thus to 
learn some sequences of action to achieve sub-goals. Singer 
and Veloso[3] have made advices by using Local State 
Features to express local states of a given environment, and 
have proposed a method for agent to integrate advices into its 
own knowledge by appending nodes into trees or by training 
back-propagation neural networks. Ahmadabadi and 
Asadpour[10] have studied how agent can choose proper 
actions from not only its own experience but also other agent 
experiences. To do this, they have addressed how to evaluate 
the expertness value of other agent experience. And then, they 
have suggested a way for agent to choose actions from linear 
combination of these expertness-based weighted values But, 
the above proposed methods may show local minima since the 
knowledge depends on local sensing radius of an agent. 

In this paper, we present an improved reinforcement 
learning algorithm using domain knowledge. In our algorithm, 
(1)The variable utilization rate of classifier for efficient 
exploration is to be designed in such a way that the rate value 
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is given as high at the beginning phase, and the rate value 
exponentially decreases as the episode increases during the 
transient phase, and finally it is given as low at the convergent 
phase. (2)Number of Examples is to be reduced by modifying 
the mechanism to append new Examples to an Example Set. 
(3)Direction-dependent multiple classifiers are to be designed 
to store more problem-independent information. To show the 
validity of our proposed method, several computer simulation 
results are illustrated, where navigation problems of a mobile 
robot and a micro aerial vehicle(MAV) are considered. 

 
2.  DIRECT APPLICATOIN OF 

REINFORCEMENT LEARNING USING 
GENERALIZED DOMAIN KNOWLEDGE TO 

NAVIGATION PROBLEM 
 

Figure 2.1 shows a conceptual diagram of the reinforcement 
learning using domain knowledge proposed by Singer and 
Veloso[3]. In their work, they applied domain knowledge to 
the game such as SOKOBAN whereas in our work, we will 
apply domain knowledge to a navigation problem. To do this, 
in this section, we redefine “Local State Feature” and 
classifier to be applied to a navigation problem. Specifically, 
domain knowledge is information about environment with 
which an agent interacts. And it is expressed as a set of tuples 
{“Local State Feature”, action, evaluation}. A classifier is 
designed or trained to contribute to effective exploration by 
employing such domain knowledge. In this paper, a classifier 
is implemented as neural networks. 

 

Figure 2.1 Reinforcement Learning using 
Domain Knowledge 

 
States used in classical reinforcement learning algorithms 

are often defined based on physical location of an agent. But 
here, “Local State Feature” is made to be independent of 
location in order to reduce problem-by-problem dependence of 
agent knowledge. 

 
2.1 Classifier design for generalization of domain 
knowledge 

 
In this section, a method how an agent could learn domain 

knowledge is described. To begin with, given a problem, the 
agent optimally updates Q-table from a problem. This Q-table 
is a set of action value functions corresponding to each state in 
the environment with which the agent interacts. And then, an 
Example which is a basis of domain knowledge is extracted 
from the learned Q-table and appended to Example Set. Here, 

an Example is defined as a structure that consists of a tuple 
{“Local State Feature”, action for each state, the evaluation 
for the action}. 

“Local State Feature” of each state is utilized as action 
firing conditions for current state and its neighbor states of the 
agent. As shown in Figure 2.2, “Local State Feature” is 
composed of sensing information whether state condition is a 
wall or a floor. A set of Example is shown in Figure 2.3. There 
are two types of Examples from the learned Q-table according 
to a criterion: One is the Positive Example that is evaluated as 
a positive experience in the sense that action for the current 
state let the agent move toward the goal. Later if an agent 
meets a state corresponding to the Positive Example, the agent 
would be indicated to do the action given by the Example. The 
other is the Negative Example which is evaluated as a 
negative experience in the sense that current action for the 
present state let the agent move away from the goal. Later if 
an agent meets a state corresponding to the Negative Example, 
the agent would be indicated not to do the action by the 
Example. 

 

Figure 2.2 Exemplar Sensing radius of an Agent 

Figure 2.3 Composition of Example Set 
 

 
Figure 2.4 Structure of Classifiers 

 
Figure 2.4 shows the structure of classifiers. Each classifier 

is expressed as a neural network, and is separately defined 

In the case of  
Radius = 2 

The current 
state of agent
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according to each action. To learn domain knowledge 
including the Example Set, the agent chooses classifier 
corresponding to an action defined within Example Set. Then 
the feature value of “Local State Feature” is applied to the 
network as an input, and a large value(0.9) in assigned as the 
output value in the case of Positive Example. Or a small 
value(0.1) is assigned as output value of the network in the 
case of Negative Example. 

 
2.2 Use of Domain Knowledge for Exploration 

 
The agent could use generalized domain knowledge which 

would be stored in the learned classifier in the phase of 
exploration to effectively solve a given new problem. 

Generally, the action policy of standard Q-Learner is given 
as 

( ) ( )* arg max ,
a

s Q s aπ = .                             (2.1) 

Let a normalized action value function be denoted by 
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And, here ( )aC s  is defined as the output of classifier aC  

for a state( s ). Then a normalized output of classifier aC  is 
written as 
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Eq.(2.2) and Eq.(2.3) are combined by the Boltzmann 
exploration method for the agent to use the classifier advices 
in exploration. The combined policy is expressed by 
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The agent by using the combined policy in Eq.(2.4) is 
expected to choose proper actions to achieve a goal in phase of 
exploration in the sense that the agent selects an action 
between an action of reinforcement learner and an advice of 
classifier. 
  
2.3 Some considerations of reinforcement learning using 
domain knowledge 

 
Followings are something to be considered for efficient 

learning of classifier and for improvement of learning speed of 
reinforcement learner using domain knowledge. 

 
1. The important contribution of domain knowledge is to 

give an agent advices to achieve a goal in the beginning 
phase of exploration just after scratching. And, as the 
Q-table of the agent is to be optimal, on the contrary, 
domain knowledge may prevent the agent from learning 
optimal actions. Thus, the variable utilization rate of 
domain knowledge will be needed. 

2. Learning speed of a neural network depends on the 
number of Examples within Example Set. If the size of 
Example Set can be reduced, the learning of the agent 
will be faster than before. 

3. In the work of Singer and Veloso[3], “Local State 
Feature” was defined to be applied to games such as 
SOKOBAN whereas it is not proper for navigation or 
path-planning problem without information of moving 

direction. We found ambiguous situations that the agent 
can not make out whether current action of the agent is 
correct to achieve a goal or not. Moreover, these 
ambiguous situations incurred larger number of training 
steps than classical reinforcement learning. An instance 
of these situations is shown in Figure 2.5. The action to 
be recommended by the classifier under the learning 
experience of Figure 2.5(a) should be the action toward 
the east or the north direction. 

 

     
Figure 2.5 Example of ambiguous problems 

 
 Suppose that the agent is in the situation of Figure 2.5(b). 

Then, the recommended action(east or north) of 
classifier would prevent the agent from achieving a goal. 
Thus, the improved classifier system to learn domain 
knowledge including moving direction will be needed. 

   
3.  AN IMPROVED REINFORCEMENT 

LEARNING ALGORITHM USING DOMAIN 
KNOWLEDGE 

 
3.1 Variable rate of utilization of classifier 
 

The advantage of the method using domain knowledge is to 
advise the agent to do proper actions at the beginning phase. 
But this method may prevent the agent from learning optimal 
actions at convergent phase. Thus, we modify the utilization 
rate of domain knowledge to improve this problem. The action 
policy equation given by Eq.(2.4) is modified as 
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( ) ( )

( ) ( )
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new
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Figure 3.1 Graph of ( )weightValue episode  

 
In Eq.(3.1), ( ),neww s a  is the normalized output value of 

classifiers , and ( )weightValue episode  is an exponential-type 

function shown in Figure 3.1. As episode increases, modified 
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action policy Eq.(3.1) has become Watkins’s action policy 
equations. Thus the convergence of this method is shown as 
  

( )
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3.2 Example-appending mechanism 
 

Reinforcement learning algorithm using domain knowledge 
by Singer and Veloso[3] generates Positive and Negative 
Examples for every state, and appends all of them to Example 
Set to be used to train neural networks. But, actually useful 
Examples for domain knowledge come from the states around 
path from the starting state to the goal state. In this sense, we 
make Example Set not by using every state in the state space, 
but by employing examples only the states around path from 
the starting state to the goal state. 

 
3.3 Direction-dependent multiple classifier 
 

Figure 3.2 Improved classifier structure 
  

 As we mentioned in section 2.3, there are many ambiguous 
situations while applying reinforcement learning using domain 
knowledge, if “Local State Feature” is dependent on moving 
direction of an agent. Thus, we suggest the classifier structure 
with direction-by-direction classifiers. Here, we design eight 
classifiers for eight directions. The agent could know the goal 
direction though the first iteration. According to this goal 
direction, the agent is to decide which classifier will be used. 
Figure 3.2 shows the conceptual structure of the proposed 
algorithm. 

Let ( ),P s a  be the output of classifier and let ( )' ,P s a  

be linear combination of each classifier written as 

( ) ( )' , ,  ,    i i i j
j
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where ia  implies the i th action, and ( )jW x  is given as 
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Finally, the action policy of our improved reinforcement 

learning algorithm using domain knowledge is expressed as 
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4. SIMULATION 
 
4.1 Simulation Environment 
  

4.1.1 Mobile Robot 
 
For simulation, the type of neural network is chosen as one 

hidden layer network, and the number of units to each layer is 
calculated to 121, 20, and 1. For mobile robot navigation, 224 
examples such as Figure 4.1 are chosen to train classifiers. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1 Examples of many kinds of maps 
 
4.1.2 Micro Aerial Vehicle(MAV) 
 
MAV example is shown as in Figure 4.2. The number of 

units to each layer of neural network is calculated to 257, 20, 
and 1. 1560 examples are chosen to train classifiers. 

 

 
Figure 4.2 Example of Map for MAV 

 
Simulation environment of MAV is three- dimensional 

space. Thus, direct application of Gaussian distribution to 
sphere is impossible due to curse of dimensionality. Here, we 
used linearly approximated distance between direction vector 
and center vectors of Gaussian distribution as shown in Figure 
4.3. 

 

Starting 
State 

Goal 
State 

Goal 
State Starting 

State 
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Figure 4.3 Approximated Gaussian weight value for MAV 
 

4.2 Simulation Result 
  
 Figure 4.4 shows the simulation result to compare 
reinforcement learning using domain knowledge with 
reinforcement learning without using domain knowledge. In 
bold ellipse of Figure 4.4, we can observe that remarkable 
reduction of path length could be obtained at the beginning 
phase when domain knowledge is applied. 

 

Figure 4.4 Comparison of using Domain Knowledge and 
not using Domain Knowledge 

 
But reinforcement learning using domain knowledge may 

be not effective in coping with ambiguous problems shown as 
Figure 2.5. Due to the incorrect advice of classifiers, the path 
length would become long as shown in Figure 4.5. 

 

 
Figure 4.5 Result due to ambiguous problem 

 
Figure 4.6 shows the simulation results of reinforcement 

learning using our improved domain knowledge. Since 
direction-dependent classifiers advised the agent to select 

proper actions to achieve the goal, performance has been 
enhanced. 
  

 
Figure 4.6 Comparison of using Domain Knowledge and 

not using Improved Domain Knowledge 
 
Figure 4.7 and Figure 4.8 show the averaging performance 

of our improved domain-knowledge-based reinforcement 
learning algorithm, domain-knowledge-based reinforcement 
learning algorithm, and classical reinforcement learning 
algorithm. Those are applied to the navigation problems of the 
mobile robot and the MAV. Many exemplar problems were 
selected to have generality where the goal direction and start 
position are randomly distributed. In case of mobile robot, 
shown in Figure 4.7, the reinforcement learning using domain 
knowledge by Singer and Veloso shows performances not 
better than the classical reinforcement learning, whereas our 
proposed algorithm shows similar performance to the classical 
reinforcement learning. 

 

Figure 4.7 Comparison of averaging performance applied to 
mobile robot 

 
With domain knowledge including ambiguous features, 

reinforcement algorithm is not applicable to large state and 
action space such as MAV three-dimensional space. Figure 4.8 
shows the averaging performance of reinforcement learning 
using our improved domain knowledge is superior to that  of 
classical reinforcement learning, when those algorithms are  
applied to MAV path planning problems. 
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Figure 4.8 Comparison of averaging performance applied to 
MAV 

 
5. CONCLUSIONS 

 
In this paper, we proposed an improved reinforcement 

learning algorithm using domain knowledge which could be 
obtained from previously solved problems. Our suggested 
algorithm shows more robust performance and faster 
convergence speed than the algorithm in [3]. On the other 
hand, our proposed method requires classifiers as many as the 
number of directions and therefore it may take more times to 
train neural networks classifiers. 
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