
ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

1. INTRODUCTION

Reinforcement learning shown in Figure 1.1 addresses how

to choose the optimal sequence of actions to achieve goals
through iterative processes that agent performs an action in its
environment and gets a reward for action[4].

Figure 1.1 Reinforcement Learning

Recently, several types of reinforcement learning

algorithms have been applied to path planning of a mobile
robot[8], biomimetics and artificial life[11], analysis of game
theory[3], packet routing of networks[12], and control of robot
manipulators[7].

Q-learning is one of the most widely used reinforcement
learning algorithms[5,6]. It can choose an optimal action in
unknown environment, but has a few defects. First, Q-learning
algorithm requires many iterations to achieve a goal and needs
large memories, because the state and action space has been
implemented by sampling continuous space as a lot of discrete
states. Several alternative methods have been proposed to
address this problem where real number reward
method[14,16], Prioritized Sweeping[15], and region-based
Q-learning could be included.

Second problem is “scratch” which could be defined as
initialization of the Q-table in the beginning of learning.
Because optimality of a sequence of actions obtained by the
Q-learning holds only on a given specific problem, for another
given problem, agent has to learn optimal sequence of actions
from scratch. The advantage of reinforcement learning is to
allow the agent to learn approximately optimal solutions of a
given problem through stochastically similar sweeping
iterations. Unfortunately, on the other hand, because of this
stochastic optimal search from scratch, even if the agent,
which learned optimal solution of a problem previously, has
been given the same problem, it should take almost same

number of iterations to learn the Q-table.
If an agent has a prior knowledge from previously solved

problems, the agent can speed up learning on new similar
problems in the sense of reduction of a large number of
training episodes. Many researchers proposed reinforcement
learning methods using a priori knowledge such as adaptive
Q-table method changing the size of Q-table[14], policy reuse
method using some of previous action functions[13], and
dyna-Q method using a virtual model of agent environment[4].
The studies on integrating advice of agent into neural
networks for an effective learning, appending advices of
external observer[1,2,9] or assessing the expertness values of
other agent knowledge[10] have been suggested as well.

Most of those methods could speed up learning by using the
knowledge about environment obtained from previous
experiences. The reinforcement learning comes simply from
the Pavlovian conditioning of animal learning, while the
method to use the knowledge about environment comes from
the advanced learning; storing something in memories, and
solving new problem relatively easy based on the memorized
knowledge[17].

As research works on reinforcement learning using
knowledge about environment, there are methods of Maclin
and Shavlik[9], Singer and Veloso[3], Ahmadabadi and
Asadpour[10]. Among them, Maclin and Shavlik proposed a
method which converted advices into statements such as
if-then conditions, which were stored in a neural network
named as KBANNs (Knowledge BAsed Neural Networks).
Here, the advices are made from optimal actions for a domain
which can be defined by sensing radius. This method enables
the agent to take advantage of external advices, and thus to
learn some sequences of action to achieve sub-goals. Singer
and Veloso[3] have made advices by using Local State
Features to express local states of a given environment, and
have proposed a method for agent to integrate advices into its
own knowledge by appending nodes into trees or by training
back-propagation neural networks. Ahmadabadi and
Asadpour[10] have studied how agent can choose proper
actions from not only its own experience but also other agent
experiences. To do this, they have addressed how to evaluate
the expertness value of other agent experience. And then, they
have suggested a way for agent to choose actions from linear
combination of these expertness-based weighted values But,
the above proposed methods may show local minima since the
knowledge depends on local sensing radius of an agent.

In this paper, we present an improved reinforcement
learning algorithm using domain knowledge. In our algorithm,
(1)The variable utilization rate of classifier for efficient
exploration is to be designed in such a way that the rate value

An Improved Domain-Knowledge-based Reinforcement Learning Algorithm

Si Young Jang* and Il Hong Suh*
* Intelligent Control and Robotics Lab., School of Electrical Engineering and Computer Science,

 Hanyang University, 1271 Sa-1 Dong, Sangrok-Gu, Ansan-Si, Kyungki-Do, 426-791, South Korea
 (Tel : +81-31-408-5802; E-mail: ihsuh@hanyang.ac.kr)

Abstract: If an agent has a learning ability using previous knowledge, then it is expected that the agent can speed up learning by
interacting with environment. In this paper, we present an improved reinforcement learning algorithm using domain knowledge
which can be represented by problem-independent features and their classifiers. Here, neural networks are employed as knowledge
classifiers. To show the validity of our proposed algorithm, computer simulations are illustrated, where navigation problem of a
mobile robot and a micro aerial vehicle(MAV) are considered.

Keywords: reinforcement learning, domain knowledge, problem-independent feature, neural network, classifier

ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

is given as high at the beginning phase, and the rate value
exponentially decreases as the episode increases during the
transient phase, and finally it is given as low at the convergent
phase. (2)Number of Examples is to be reduced by modifying
the mechanism to append new Examples to an Example Set.
(3)Direction-dependent multiple classifiers are to be designed
to store more problem-independent information. To show the
validity of our proposed method, several computer simulation
results are illustrated, where navigation problems of a mobile
robot and a micro aerial vehicle(MAV) are considered.

2. DIRECT APPLICATOIN OF

REINFORCEMENT LEARNING USING
GENERALIZED DOMAIN KNOWLEDGE TO

NAVIGATION PROBLEM

Figure 2.1 shows a conceptual diagram of the reinforcement
learning using domain knowledge proposed by Singer and
Veloso[3]. In their work, they applied domain knowledge to
the game such as SOKOBAN whereas in our work, we will
apply domain knowledge to a navigation problem. To do this,
in this section, we redefine “Local State Feature” and
classifier to be applied to a navigation problem. Specifically,
domain knowledge is information about environment with
which an agent interacts. And it is expressed as a set of tuples
{“Local State Feature”, action, evaluation}. A classifier is
designed or trained to contribute to effective exploration by
employing such domain knowledge. In this paper, a classifier
is implemented as neural networks.

Figure 2.1 Reinforcement Learning using
Domain Knowledge

States used in classical reinforcement learning algorithms

are often defined based on physical location of an agent. But
here, “Local State Feature” is made to be independent of
location in order to reduce problem-by-problem dependence of
agent knowledge.

2.1 Classifier design for generalization of domain
knowledge

In this section, a method how an agent could learn domain

knowledge is described. To begin with, given a problem, the
agent optimally updates Q-table from a problem. This Q-table
is a set of action value functions corresponding to each state in
the environment with which the agent interacts. And then, an
Example which is a basis of domain knowledge is extracted
from the learned Q-table and appended to Example Set. Here,

an Example is defined as a structure that consists of a tuple
{“Local State Feature”, action for each state, the evaluation
for the action}.

“Local State Feature” of each state is utilized as action
firing conditions for current state and its neighbor states of the
agent. As shown in Figure 2.2, “Local State Feature” is
composed of sensing information whether state condition is a
wall or a floor. A set of Example is shown in Figure 2.3. There
are two types of Examples from the learned Q-table according
to a criterion: One is the Positive Example that is evaluated as
a positive experience in the sense that action for the current
state let the agent move toward the goal. Later if an agent
meets a state corresponding to the Positive Example, the agent
would be indicated to do the action given by the Example. The
other is the Negative Example which is evaluated as a
negative experience in the sense that current action for the
present state let the agent move away from the goal. Later if
an agent meets a state corresponding to the Negative Example,
the agent would be indicated not to do the action by the
Example.

Figure 2.2 Exemplar Sensing radius of an Agent

Figure 2.3 Composition of Example Set

Figure 2.4 Structure of Classifiers

Figure 2.4 shows the structure of classifiers. Each classifier

is expressed as a neural network, and is separately defined

In the case of
Radius = 2

The current
state of agent

ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

according to each action. To learn domain knowledge
including the Example Set, the agent chooses classifier
corresponding to an action defined within Example Set. Then
the feature value of “Local State Feature” is applied to the
network as an input, and a large value(0.9) in assigned as the
output value in the case of Positive Example. Or a small
value(0.1) is assigned as output value of the network in the
case of Negative Example.

2.2 Use of Domain Knowledge for Exploration

The agent could use generalized domain knowledge which

would be stored in the learned classifier in the phase of
exploration to effectively solve a given new problem.

Generally, the action policy of standard Q-Learner is given
as

() ()* arg max ,
a

s Q s aπ = . (2.1)

Let a normalized action value function be denoted by

() ()
()
,

,
,

a

Q s a
P a s

Q s a
′

=
′∑

. (2.2)

And, here ()aC s is defined as the output of classifier aC

for a state(s). Then a normalized output of classifier aC is
written as

() ()
()

, a

a
a

C s
w s a

C s′
′

=
∑

. (2.3)

Eq.(2.2) and Eq.(2.3) are combined by the Boltzmann
exploration method for the agent to use the classifier advices
in exploration. The combined policy is expressed by

() () ()
() ()

* , ,
arg max

, ,a
a

w s a P s a
s

w s a P s a
π

′

⋅
=

′ ′⋅∑
 . (2.4)

The agent by using the combined policy in Eq.(2.4) is
expected to choose proper actions to achieve a goal in phase of
exploration in the sense that the agent selects an action
between an action of reinforcement learner and an advice of
classifier.

2.3 Some considerations of reinforcement learning using
domain knowledge

Followings are something to be considered for efficient

learning of classifier and for improvement of learning speed of
reinforcement learner using domain knowledge.

1. The important contribution of domain knowledge is to

give an agent advices to achieve a goal in the beginning
phase of exploration just after scratching. And, as the
Q-table of the agent is to be optimal, on the contrary,
domain knowledge may prevent the agent from learning
optimal actions. Thus, the variable utilization rate of
domain knowledge will be needed.

2. Learning speed of a neural network depends on the
number of Examples within Example Set. If the size of
Example Set can be reduced, the learning of the agent
will be faster than before.

3. In the work of Singer and Veloso[3], “Local State
Feature” was defined to be applied to games such as
SOKOBAN whereas it is not proper for navigation or
path-planning problem without information of moving

direction. We found ambiguous situations that the agent
can not make out whether current action of the agent is
correct to achieve a goal or not. Moreover, these
ambiguous situations incurred larger number of training
steps than classical reinforcement learning. An instance
of these situations is shown in Figure 2.5. The action to
be recommended by the classifier under the learning
experience of Figure 2.5(a) should be the action toward
the east or the north direction.

Figure 2.5 Example of ambiguous problems

 Suppose that the agent is in the situation of Figure 2.5(b).

Then, the recommended action(east or north) of
classifier would prevent the agent from achieving a goal.
Thus, the improved classifier system to learn domain
knowledge including moving direction will be needed.

3. AN IMPROVED REINFORCEMENT

LEARNING ALGORITHM USING DOMAIN
KNOWLEDGE

3.1 Variable rate of utilization of classifier

The advantage of the method using domain knowledge is to
advise the agent to do proper actions at the beginning phase.
But this method may prevent the agent from learning optimal
actions at convergent phase. Thus, we modify the utilization
rate of domain knowledge to improve this problem. The action
policy equation given by Eq.(2.4) is modified as

() () ()
() ()

() ()

* , ,
arg max

, ,

 , , () .

new

a
newa

new weight

w s a P s a
s

w s a P s a

where w s a w s a Value episode

π
′

⋅
=

′ ′⋅

← +

∑
 (3.1)

Figure 3.1 Graph of ()weightValue episode

In Eq.(3.1), (),neww s a is the normalized output value of

classifiers , and ()weightValue episode is an exponential-type

function shown in Figure 3.1. As episode increases, modified

ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

action policy Eq.(3.1) has become Watkins’s action policy
equations. Thus the convergence of this method is shown as

()

() ()
()

*

, (),

,
arg max , .

,

new weight

a
a

w s a Value episode

P s a
s as episode

P s a
π

′

≈

≈ → ∞
′∑

 (3.2)

3.2 Example-appending mechanism

Reinforcement learning algorithm using domain knowledge
by Singer and Veloso[3] generates Positive and Negative
Examples for every state, and appends all of them to Example
Set to be used to train neural networks. But, actually useful
Examples for domain knowledge come from the states around
path from the starting state to the goal state. In this sense, we
make Example Set not by using every state in the state space,
but by employing examples only the states around path from
the starting state to the goal state.

3.3 Direction-dependent multiple classifier

Figure 3.2 Improved classifier structure

 As we mentioned in section 2.3, there are many ambiguous
situations while applying reinforcement learning using domain
knowledge, if “Local State Feature” is dependent on moving
direction of an agent. Thus, we suggest the classifier structure
with direction-by-direction classifiers. Here, we design eight
classifiers for eight directions. The agent could know the goal
direction though the first iteration. According to this goal
direction, the agent is to decide which classifier will be used.
Figure 3.2 shows the conceptual structure of the proposed
algorithm.

Let (),P s a be the output of classifier and let ()' ,P s a

be linear combination of each classifier written as

() ()' , , , i i i j
j

P s a P s a W= ⋅∑ (3.3)

where ia implies the i th action, and ()jW x is given as

 ()
2

2

1 1exp , :
22

j
x jW x x direction angle
σπσ

 − = −

 (3.4)

Finally, the action policy of our improved reinforcement

learning algorithm using domain knowledge is expressed as

() () ()
() ()

() ()

'
*

'

'

, ,
arg max

, ,

 , , .

new

a
newa

i i
i

w s a P s a
s

w s a P s a

where P s a P s a W

π
′

⋅
=

′ ′⋅

= ⋅

∑
∑

 (3.4)

4. SIMULATION

4.1 Simulation Environment

4.1.1 Mobile Robot

For simulation, the type of neural network is chosen as one

hidden layer network, and the number of units to each layer is
calculated to 121, 20, and 1. For mobile robot navigation, 224
examples such as Figure 4.1 are chosen to train classifiers.

Figure 4.1 Examples of many kinds of maps

4.1.2 Micro Aerial Vehicle(MAV)

MAV example is shown as in Figure 4.2. The number of

units to each layer of neural network is calculated to 257, 20,
and 1. 1560 examples are chosen to train classifiers.

Figure 4.2 Example of Map for MAV

Simulation environment of MAV is three- dimensional

space. Thus, direct application of Gaussian distribution to
sphere is impossible due to curse of dimensionality. Here, we
used linearly approximated distance between direction vector
and center vectors of Gaussian distribution as shown in Figure
4.3.

Starting
State

Goal
State

Goal
State Starting

State

ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

Figure 4.3 Approximated Gaussian weight value for MAV

4.2 Simulation Result

 Figure 4.4 shows the simulation result to compare
reinforcement learning using domain knowledge with
reinforcement learning without using domain knowledge. In
bold ellipse of Figure 4.4, we can observe that remarkable
reduction of path length could be obtained at the beginning
phase when domain knowledge is applied.

Figure 4.4 Comparison of using Domain Knowledge and
not using Domain Knowledge

But reinforcement learning using domain knowledge may

be not effective in coping with ambiguous problems shown as
Figure 2.5. Due to the incorrect advice of classifiers, the path
length would become long as shown in Figure 4.5.

Figure 4.5 Result due to ambiguous problem

Figure 4.6 shows the simulation results of reinforcement

learning using our improved domain knowledge. Since
direction-dependent classifiers advised the agent to select

proper actions to achieve the goal, performance has been
enhanced.

Figure 4.6 Comparison of using Domain Knowledge and

not using Improved Domain Knowledge

Figure 4.7 and Figure 4.8 show the averaging performance

of our improved domain-knowledge-based reinforcement
learning algorithm, domain-knowledge-based reinforcement
learning algorithm, and classical reinforcement learning
algorithm. Those are applied to the navigation problems of the
mobile robot and the MAV. Many exemplar problems were
selected to have generality where the goal direction and start
position are randomly distributed. In case of mobile robot,
shown in Figure 4.7, the reinforcement learning using domain
knowledge by Singer and Veloso shows performances not
better than the classical reinforcement learning, whereas our
proposed algorithm shows similar performance to the classical
reinforcement learning.

Figure 4.7 Comparison of averaging performance applied to
mobile robot

With domain knowledge including ambiguous features,

reinforcement algorithm is not applicable to large state and
action space such as MAV three-dimensional space. Figure 4.8
shows the averaging performance of reinforcement learning
using our improved domain knowledge is superior to that of
classical reinforcement learning, when those algorithms are
applied to MAV path planning problems.

ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

Figure 4.8 Comparison of averaging performance applied to
MAV

5. CONCLUSIONS

In this paper, we proposed an improved reinforcement

learning algorithm using domain knowledge which could be
obtained from previously solved problems. Our suggested
algorithm shows more robust performance and faster
convergence speed than the algorithm in [3]. On the other
hand, our proposed method requires classifiers as many as the
number of directions and therefore it may take more times to
train neural networks classifiers.

REFERENCES

[1] S. Y. Jang, I. H. Suh, et al., “Reinforcement Learning

Algorithm Using Domain Knowledge,” Proc. of the
international Conference on Control Automation and
Systems, October, 2001.

[2] B. O. Kim, I. H. Suh, et al., “Reinforcement Learning
Algorithm using Domain Knowledge for MAV,” Proc. of
the KIEE Summer Annual Conference, July, 2002.

[3] B. Singer, M. Veloso, “Learning State Feature from
Policies to Bias Exploration in Reinforcement Learning,”
Technical Note of Carnegie Mellon University, April,
1999.

[4] R. S. Sutton and A. G. Barto, “Reinforcement Learning,
An Introduction,” Cambridge, MA: MIT Press, 1998.

[5] C. Watkins, P. Dayan, “Q-Learning, technical note,”
Machine Learning, Vol. 8, pp. 279-292, 1992.

[6] C. Watkins, “Learning from Delayed Reward,” PhD
Thesis, Cambridge, May, 1989.

[7] I. H. Suh, J. H. Kim and S. –R. Oh, “Region-based
Q-Learning for Intelligent Robot Systems,” Proc. of
IEEE Int. Conf. on Computational Intelligence in
Robotics and Automation, pp. 163-178, July, 1997.

[8] J. H. Cha, S. H. Kong, I. H. Suh, “Region-based
Q-learning For Autonomous Mobile Robot Navigation,”
KACC2000, 15th Korea, October, 2000.

[9] R. Maclin, J. W. Shavlik, “Creating Advice-Taking
Reinforcement Learners,” Machine Learning, 22, 1996.

[10] M. Nili Ahmadabadi, M. Asadpour, “Expertness Based
Cooperative Q-Learning,” IEEE Trans. On Systems,
Man, And Cybernetics-Part B: Cybernetics, Vol 32, No.
1, February. 2002.

[11] S. Yoon, “Affective Synthetic Characters,” PhD Thesis,
MIT, June, 2000.

[12] M. Littman and J. Boyan, “A distributed reinforcement
learning scheme for network routing,” Technical Report,
School of Computer Science, Carnegie Mellon

University, 1993.
[13] M. Bowling and M. Veloso, “Bounding the

suboptimality of reusing subproblems,” In Proceeding
of the NIPS Workshop on Abstraction in Reinforcement
Learning, December, 1998.

[14] Y. Hirashima, “Q-Learning Algorithm Using an
Adaptive-Sized Q-table,” Proceeding of the 38th Conf.
on Decision & Control, Phoenix, pp.1599-1604,
December, 1998.

[15] A. W. Moore, C. G. Atkeson, “Prioritized Sweeping:
Reinforcement Learning with Less Data and Less Real
Time,” Machine Learning, 13, 1993.

[16] T. D’Orazio, G. Cicirelli, “Continuous Reward versus
Discrete Reward in a Q-learning Agent,” The Fifth
ICARCV’98, Singapore, December, 1998.

[17] R. S. Sutton and A. G. Barto, “Time-derivative models
of Pavlovian Reinforcement,” Learning and
Computational Neuroscience: Foundations of Adaptive
Networks, pp. 497-537, Cambridge, MA: MIT Press,
1990.

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	page11: 1309
	page21: 1310
	page31: 1311
	page41: 1312
	page51: 1313
	page61: 1314

