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1. INTRODUCTION 
 

Recently, technology for home network has made 
remarkable progress in the industries. And, every home is 
expected to be equipped with home network capability in the 
recent future as seen in the concept of ubiquitous computing. 
Such rapid development of the technology for home network 
will make home smarter by equipping home with intelligent 
information devices, which include intelligent service robots. 
Because service robots are aimed at helping humans in daily 
life, it is inevitable for service robots to operate in home 
network environment. Especially mobile robots will play an 
important role among the service robotics.  

In home network environment, a mobile robot is equipped 
with a communication module, and is given some global 
position information through home network [1]. Although a 
mobile robot in home network environment has no sensors 
such as gyroscopes and laser range finders which are 
expensive and give limited information about environment, 
the robot can get the global position information through home 
network, which is provided by some devices such as the home 
server. The home environment renders various unstructured 
environment which may be changed by replacing sensor 
devices, network media, or changing the location of the 
sensors. The change in the environment deteriorates the 
performance of control of mobile robots. A mobile robot in 
home network environment should cope with the problem. 
Because it is hard to model the changes in home network 
environment, we apply reinforcement learning to the problem. 
Furthermore, multiple control objectives should be considered 
in mobile robot control, for example, the energy consumption, 
safety, tracking error, etc. Therefore, we propose a multiple 
reward reinforcement scheme for mobile robot control with 
multiple objectives in unstructured home network 
environment.  

Reinforcement learning is how to learn the optimal policy 
based on the reward from environment [2]. Reinforcement 
learning has been popularly applied to mobile robot control in 
unstructured environment since it needs no model for 
environment [3]. Especially, in this paper, a multiple reward 
reinforcement learning is proposed to deal with mobile robot 
control problem, because multiple control objectives should be 
considered in mobile robot control. The method uses the 
concept of Pareto optimality in optimizing the policy. Among 
conventional multiobjective optimization methods, the 

max-min optimization produces one of Pareto optimal 
solutions, which maximizes the objective with minimum value 
among the objectives [4]. In this paper, the max-min 
optimization is applied to reinforcement learning.  

We adopt the fuzzy inference system for mobile robot 
control, which has multiple consequent singletons for the 
consequent fuzzy set [5]. The fuzzy inference system has the 
structure similar to the fuzzy controller with inconsistent rule 
base [6]. Among the multiple consequent singletons, one 
singleton is selected as the consequent fuzzy set for the fuzzy 
rule. Multiple reward reinforcement learning is applied to 
design the fuzzy controller based on rewards corresponding to 
multiple objectives. We apply multiple reward fuzzy 
Q-learning for the multiple reward reinforcement learning. 

The outline of the paper is as follows. Section 2 reviews 
several important preliminaries. In Section 3, the multiple 
reward fuzzy Q-learning is proposed as the multiple reward 
reinforcement learning for control of the mobile robot. In 
Section 4, to show the effectiveness of the proposed method, 
some simulation results are given, which are performed in real 
home network environment such as LAN, and wireless LAN, 
etc. Finally, Section 5 concludes the research and provides the 
discussion about the further research.  

 
2. PRELIMINARY 

 
2.1 Reinforcement Learning 

Reinforcement learning is based on Markov decision 
process where the information available to the agent in the 
current situation is sufficient to determine the future states of 
the environment independent of the past information. It is 
composed of state space S and action space A. 
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where a
ss'P  is the probability of transition from state s to state 

s′  under action a. A policy is a mapping from perceived 
states of the environment to actions to be taken in those states: 

)( ,: spaASp =→ . In stochastic environment, generally, 
policies may be stochastic. 

A reward function maps each perceived state (or 
state-action pair) of the environment to a single number, a 
reward, indicating the intrinsic desirability of the state. 
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Just as the policy, it may be stochastic. 

A state-value function )(sV p  of the policy p  specifies 
what is good in the long run when the system starts at the state 
s and adopts the policy p . 

In case of an infinite-horizon model, the expected 
discounted return is used for the state-value function as 
follow: 
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where s is an initial state, ts is a state at time t after starting 

from the initial state s, 1+tr  is a reward at time t given that 

the agent follows the policy p , and 10 <≤ γ  is the discount 
rate. The state-value function defines a partial ordering over 
policies in the set ∏  of the possible policies π ’s, in the 
sense that a policy p  is better than or equal to a policy p'  

iff )()( sVsV p'p ≥  for all Ss ∈ . 
If the policy π  is optimal, it satisfies the following 

relation called Bellman optimality equation for *V : 
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Therefore, reinforcement learning is how to get the optimal 
policy which gives the optimal value function. Adaptive 
heuristic critic and Q-learning are two major reinforcement 
learning methods [2].  
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Fig. 1. General structure of reinforcement learning 
 
Q-learning learns the action-state value function Q rather 

than state value function in order to get an optimal policy. 
Using the Q value, the optimal policy can be obtained. Q value 
is learned by the following rule: 
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(5)   
 

2.2 Mobile Robot in home network environment 
In general, a mobile robot has some sensors to detect its 

location and posture, whereas sensors are equipped within 
home network in home network environment. Therefore, a 
mobile robot in home network environment communicates 
with sensors through home network. Therefore, a mobile robot 
in home network environment has three parts: main controller, 
actuators, and communication units, while the conventional 

robot has four parts: main controller, actuators, sensors, and 
communication units [1]. 

 

Sensor

High Performance
Main Controller

Actuator 
Drivers

Actuator Actuator

Sensor

Comm. 
Unit

Communication Unit

Simple Main Controller

Actuator Drivers

Actuator Actuator

 
(a)                    (b) 

(a) General mobile robot architecture. 
(b) Mobile robot architecture in home network. 

Fig. 2 Sensing architecture of mobile robots in the home 
network environment [1]. 

 
Although the mobile robot in home network environment 

has no sensors such as gyroscopes and laser range finders 
which are expensive and give limited information about 
environment, the robot can get the global information through 
home network, which is provided by some devices such as the 
home server. The home server provides the global map by 
gathering sensor information from various sensors pervaded in 
home through home network, and the middleware can give 
interoperability among heterogeneous devices. 

The home environment renders various unstructured 
environment which may be changed by replacing sensor 
devices, network media, or changing the location of the 
sensors. The change in the environment deteriorates the 
performance of control of mobile robots. In this paper, the 
change in home network environment is assumed as the 
change in time delay of sensor values and in noise level. 
 

3. MULTIPLE REWARD REINFORCEMENT 
LEARNING FUZZY CONTROL 

3.1 Fuzzy Inference System  
For the fuzzy controller to be designed, the fuzzy inference 

system is used in the paper, which has multiple consequent 
singletons for the consequent fuzzy set [5]. The fuzzy 
inference system has the structure similar to the fuzzy 
controller with inconsistent rule base [6]. Among the multiple 
consequent singletons, one singleton is selected as the 
consequent fuzzy set for the fuzzy rule. This is the process of 
the design of the fuzzy controller of the multiobjective control 
problem.  

The fuzzy inference system is composed of four layers as 
depicted in Fig. 3. Each layer of the fuzzy inference systems is 
as follows: 

Layer 1) Input layer. 
Layer 2) Membership calculation of each antecedent term. 
Layer 3) Rule base node. It connects the input from the 

layer 2 to the output. 
Layer 4) In the node, the defuzzification is performed and 

the final output of the fuzzy controller is determined. 
In the paper, output fuzzy sets are singleton, and the 
center-average defuzzification is adopted as:  
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where iy  is the singleton consequent singleton of the rule i, 

and )(xiµ is the firing strength of the rule i. 
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Fig. 3 Adaptive Fuzzy Inference System [5], 

where Ni: number of the input variables,  
N: number of the rules, No: number of the outputs 

 
In the fuzzy controller, multiple consequent singletons for 

each rule may be used. The output consequent set is singleton 
but has many possible candidates. The rule is in the form of 
the following: 

Ri : If 1x  is iL1 and … and Nx is NL1 , then u is iU  

 },{ ,2,1, piiii UUUU L∈     (7) 
At any instance, only one output consequent singleton should 
be selected in the scheme. 
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where iU  is the selected output consequent term of the rule i 

among },,{ ,2,1, piii UUU L .  

 
3.2 Multiple Reward Reinforcement Learning  

For multiple reward reinforcement learning, we extend the 
fuzzy Q-learning structure [5]. The method uses the concept of 
Pareto optimality in optimizing the policy. Among 
conventional multiobjective optimization methods, the 
max-min optimization produces one of Pareto optimal 
solutions, which maximizes the objective with minimum value 
among the objectives [4]. Therefore, we apply the concept of 
max-min optimization for multiple objective optimization to 
fuzzy Q-learning for multiple reward reinforcement learning. 

To implement the max-min policy in fuzzy Q-learning, we 
use the multiple action-state value functions of each action as 

follows: i
jQ  where i is the index for rule and j is the index 

for objective.  
In case of fuzzy inference system, for each consequent part 

of each fuzzy rule, multiple action-state value functions are 
assigned and the minimum value among the action-state value 

functions of multiple objectives is considered as its 
action-value. And, if we take an ordinary greedy policy, we 
have taken the very max-min optimization. 

The expected action-state value of each action of each rule 
is updated by the temporal difference of the expected overall 
action-state value function corresponding objective as 
expressed in Eq. (9). 
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where t is the time index, α  is the learning rate, γ  is the 

discount rate, j
tr  is the reward corresponding the jth 

objective, i is the index for rule, N is the total number of rules, 
and j is the index for objective. 

Therefore, learning algorithm for multiple reward fuzzy 
Q-learning as follows: 

 
Step1) Calculate the maximum action-state value.  
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each rule, i is the index for fuzzy rule, and j is index for the 
objective. 
 

Step 2) Compute temporal differences for each objective. 
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where γ  is the discount rate, and 
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Step 3) Update the quality vector, that is, utility vector of 

each rule output. 
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where ϑ  is a learning rate, i
te is the eligibility trace. 

 
Step 4) Eligibility Update 
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where 'λ  is the actor recency factor. 
 

Step 5) Select a new action i
tU  where i

tU  is the 
ε -Greedy action of rule i at time step t [5]. The utility of an 
action is determined by the minimum utility of the action 
among the multiple utilities corresponding to multiple 
objectives. Maximization process is performed stochastically 
by ε -Greedy selection. 

 
Step 6) Calculate the value of the action-state value 

function. 
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where tU  is the global action. 
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Step 7) Take the action 
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Fig. 4 Selection of the consequent term for each rule. 

 
4. SIMULATION 

 
4.1 Mobile robot 
 

For simulation, the kinematics of a mobile robot is used as 
Eq. (15). Input variables are the velocity values of both wheels. 
We assume there is a kind of damping factor when we drive 
the wheels, therefore, the first order dynamic equation as Eq. 
(16) is used. 
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where vR is the right wheel velocity value, vL is the left wheel 
velocity value, h is the displacement between the center of the 
robot and the wheel axis, and L is the distance between two 
wheels. For simulation, we use h=0 (m), L=0.3 (m).  
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Fig. 5 Kinematics of a mobile robot. 

 
The multiple rewards for reinforcement learning are given 

as follows: 
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where e is the distance between the desired path and the center 
of the mobile robot. The position error and the posture error 
are considered as control objectives.  

In simulation, we use two personal computers. One 
personal computer emulates a mobile robot, and the other 
emulates the sensors. Two computers communicate through 
home network just like a mobile robot and sensors in home 
network. Fuzzy controller uses the data from remote computer 
which emulate sensors in home network, whereas the data are 
originated from the computer where the fuzzy controller and 
mobile robot kinematics are emulated. The data rebound to the 
computer which originates the data. The change in home 
network environment is assumed as the change in time delay 
of sensor values and in noise level. 
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Fig. 6 Simulation Environment. 

 
4.2 Simulation results  

 We assume the sensor noises have Gaussian random 
distribution with zero mean and standard deviation (0.001, 
0.001, 0.001) for the posture variable ),,( θyx . Initial posture 
of the mobile robot is set as (0,-0.4,0) and the desired path is 
set to the x-axis. Therefore, the distance between the desired 
path and the center of the mobile robot, that is, e is the same as 
y . The parameters for reinforcement learning scheme are as 

follows: 
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The trials are performed for 10 times where each trial is 

composed of ten learning periods. Both average squared error 
sums of e and θ  among trials are used as the performance 
indices. 
 

Table 1 Simulation results 
 

Simulation type Performance 
Index of e 

Performance 
Index of ? 

Random delay with no 
learning 

70.01 2088 

Random delay with learning 66.523 1902 
Random delay with multiple 
reward reinforcement 
learning 

50.97 786.9 

LAN with no learning 64.6 1737.3 
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LAN with learning 62.73 1651.85 
LAN with multiple reward 
reinforcement learning 

60.25 1548.6 

WLAN with no learning 61.072 1682.1 
WLAN with learning 60.1 1624.71 
WLAN with multiple reward 
reinforcement learning 

58.9 1532.9 

 
Table 1 shows the simulation results. The first row is the 

simulation with random delay 0.2~0.7 (sec.) and no learning 
performed. The second row is the simulation with 
reinforcement learning. The third row is the simulation with 
the proposed multiple reward reinforcement learning.  The 
performance is improved by 27% reduction of the average 
squared error sum of e and 62% reduction of the average 
squared error sum of ?. Fig. 7 and Fig. 8 show one example of 
comparison among three cases. 

 

 

a) 

b) 

c) 

 
a) Random delay with no learning 
b) Random delay with learning 
c) Random delay with multiple  

reward reinforcement learning 
Fig. 7 Simulation Result. 

 

a) 

b) 

c) 

 
a) Random delay with no learning 
b) Random delay with learning 
c) Random delay with multiple 

reward reinforcement learning 
Fig. 8 Simulation Result. 

 
In real LAN environment, the value in the fourth row is 

derived without learning. With reinforcement learning, the 
performance is improved as the value in the fifth row. The 

proposed multiple reward reinforcement learning produces the 
value in the sixth row. In WLAN environment, the values in 
the seventh, eighth and ninth rows show the improvement in 
the performance. 
 

5. CONCLUDING REMARKS 
 

In this paper, the multiple reward reinforcement learning 
scheme is proposed as a solution to the control problem of a 
mobile robot in home network environment. Multiple reward 
fuzzy Q-learning is proposed for the multiple reward 
reinforcement learning.  

Some simulation results are given to show the effectiveness 
of the proposed scheme, which is performed in real home 
network environment. The experiment with a real mobile 
robot and convergence issue of the reinforcement learning 
remain for the future research. 
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