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1.Introduction 

The next generation of combat aircraft is likely to 

operate in more severe environmental conditions that in 

the past. This implies that such an aircraft, in addition 

to gust, will be exposed to blast, fuel explosions, sonic-

booms, etc. 

Under such conditions even if the flight speed of the 

aifcraft is below the flutter speed, the wing structure 

will be subjected to large oscillations that can result in 

its failure by fatigue. Moreover, in some special events, 

occurring during the operational life of the aircraft such 

as escape maneuvers, significant decays of the flutter 

speed can occur, with dramatic consequences for the 

further evolution of the aircraft. All these facts fully 

underline the necessity of the implementation of an 

active control capability enabling one to fulfill two 

basic objectives: a) to enhance the subcritical 

aeroelastic response, in the sense of suppressing the 

wing oscillations in the shortest possible time, and b) to 

extend the flight envelop by suppressing flutter 

instability and so, contributing to a significant increase 

of the allowable flight speed. With this in mind, in this 

paper the active aeroelastic control of a 2-D wing-flap 

system exposed to an incompressible flowfield will be 

investigated. In this context, a combined control 

strategy using LQG/LTR was implemented, and some 

of its performances put into evidence. 

 

2.Configuraion of the 2-D Wing-Flap Structural 

Model 

Figure 1 shows the typical wing-flap that is considered 

in the present analysis. This model has been established 

for 2-D aeroelastic analysis, see e.g [1,2]. The three 

degrees of freedom associated with the airfoil appear 

clearly from Fig.1. The pitching and plunging 

displacement are restrained by a pair of springs 

attached to the elastic axis(EA)  with 

spring constants Kα  and hK , respectively. The 

control flap is located at the trailing edge. A torsional 

flap spring is also attached at the hinge axis whose 

spring constant is K
β

; h denotes the plunge 



displacement (positive downward), α the pitch angle 

(measured from the horizontal at the elastic axis of the 

airfoil) and β is the flap deflection (measured from 

the axis created by the airfoil at the control flap hinge). 

 

Fig1.Typical wing-flap section  

 

3. Governing Equation of the Aeroelastic Model 

The governing equations pertinent to the three degrees 

of freedom aeroelastic systems can be found in the 

classical aeroelasticity monographs. In matrix form the 

aeroelasic governing equations of the 2-D wing-flap 

system can be written as [3,4]: 

( )
( ) ( ) ( ) ( ) ( )

( )

new

new

new

L t
MY t KY t M t B u t G w t

T t

 
 + = − + + 
  

&&           (1) 

In the equation 

( )
( ) ( ) ( )

Th t
Y t t t

b
α β =   

                       (2) 

is the state-space vector. 

bm S S
M bS I I bcS

bS I bcS I

α β

α α β β

β β β β

 
 = + 
 + 

 (3)                           

                 

0 0
0 0

0 0

hbK
K K

K
α

β

 
 =  
  

                         (4)             

11 12 13
1 0 1 0

21 2 2 23

31 32 33

A A A

A A A A
A A A

×
 
 =  
  

                         (5) 

denote the mass, stiffness and aerodynamic matrixes, 

repectively: u(t) is control input. w(t) is an external 

disturbance represented by a time-dependent external 

excitation, such as by a blast, sonic-boom or step 

pressure pulse; G is the disturbance-input matrix while 

B is the control input matrix. 

The new aerodynamic load vector appearing in Eq. (1) 

is expressed in terms of its components as  

  ( ) ( ) ( )new GL t L t L t= +               (6)                   

( ) ( ) ( )new yGM t M t M t= +          (7)                         

( ) ( ) ( )new yGT t T t T t= +             (8)                         

where L, M, and T denote, respectively, the 

  aerodynamic lift (measurement positive in the upward 

direction), the pitching moment about the one-quarter 

chord of the airfoil (positive nose-down) and the flap 

torque applied to the flap hinge. 

The second terms in the expressions (6)-(8) are due to 

the gust, in this respect, for the gust loading we have[5] 
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where Gw  is the gust vertical velocity, while 

LGI , MGI  and 
fG

I  are the related impulse functions. 

For the present case of the incompressible flow, we 

have [5]: 
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and where ϕ  is the 'Kussner s&&  function, 



approximated by: 
0.13( ) 1 0.5 0.5t tt e eϕ − −= − −   (15)                                     

In the time domain, the aerodynamic loads have the 

form 
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The functions D(t) and P(t) are Duhamel 

Integrals given by 
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While ( )i φΦ  are Theodorsen’s Constants [1], where 

arccos( / )
flap

x bφ = − .  

The standard two-term Jones exponential 

approximation of the Wagenr’s function 

is given by 
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By replacing Eq. (24) in Eqs. (16) and (18), one obtain 

for D(t) and P(t) the expressions: 
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4. Design of Control Law 

In this paper, we designed LQG/LTR control law which 

related the Kalman filter[7]: 
0( ) ( ) ( ( )) ( )cx A LC x t Bu x t Ly t= + + −) ) )&          (29)                               

Here 0
cu  is represented according to the law: 

( ( ))o
cu x t Kx=) )                              (30)                                               

with 

TK RB P= −  and 1TL C W −=−Π               (31) 

The matrices P  and Π  are the unique symmetric, 



positive definite solutions of the algebraic Riccati 

equations. 

The time domain equations of a full order observer 

based controller are well known and are given by [8] 

( )fx Ax Bu K y Cx Du= + + − −) ) )&               (32)                                        
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The time domain dynamic equations of a Luenberger 

observer based controller are given by 
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fL A K C= − , fG B K D= − , fH K= , P F= ,  

0V =  T I=                               (36) 

 

5.Numerical Simulations 

The considered geometrical and physical characteristics 

of the 2D wing-flap system are identical to the ones in 

the work by Edwards[2] 
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In Fig. 2 through 3, the open/closed response time-

histories of the quantities  ( ( / ), , )h h b α β≡%  of the 

aeroelastic system operating in the close proximity of 

the flutter boundary( 889 /sec
f

V ft= ) and subjected 

to a blast load, represented in the absence of the control, 

LQG control, LQG/LTR control, respectively. 

 

Fig.2 Open/closed loop plunging time history of the 

aeroelastic system under blast 

 

Fig.3 The counterpart of Fig 2. for the pitching 

displacement 

 

Fig.4 and Fig.5 the open/closed-loop dimensionless 

plunging time-history of the aeroelastic system 

operating in the proximity of the flutter instability and 

exposed to a sonic-boom pressure pulse presented. In 

the previous case the combined control reveals its 

efficiency to suppress the flutter instability and 

simultaneously, the oscillations of the wing. 

Fig.6 is the singular value decomposition in frequency 

domain. In this figure, we saw that the frequency 

response of LQR, LQG, LQG/LTR controlled response. 

As the loop transfer gain increase, the performance of 

LQG/LTR controller is similar to the LQR controller.  

 



 

Fig.4 Open/close loop plunging time-history of the 

aeroelastic systemunder a sonic-boom pulse 

 

 

Fig.5 The counterpart of Fig.4 for the pitching 

displacement 

 

 

Fig.6. The Singular Value Decomposition in frequency 

domain. 

Closure 

The goal is to implement a robust control capability 

that utilizes the deflected flap as to suppress the flutter 

instability or enhance the subcritical aeroelastic 

response to gust or blast loads. To this end, the high 

efficiency of the implemented LQG/LTR control 

strategy was presented. 
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