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1. INTRODUCTION 
 

Recently, 3D structure recovery through self-calibration of 
camera has been actively researched. Traditional calibration 
algorithm requires known 3D coordinates of the control points 
while self-calibration only requires the corresponding points 
of images, thus it has more flexibility in real application. In 
general, self-calibration algorithm results in the nonlinear 
optimization problem using constraints from the intrinsic 
parameters of the camera. Thus, it requires initial value for the 
nonlinear minimization. Traditional approaches get the initial 
values assuming they have the same intrinsic parameters while 
they are dealing with the situation where the intrinsic 
parameters of the camera may change.  

Faugeras et al. [1] proposed a self-calibration algorithm 
which uses the Kruppa equation. It enforces that the planes 
through two camera centers which are tangent to the absolute 
conic should also be tangent to both of its images. Hartley [2] 
proposed another method based on the minimization of the 
difference between the internal camera parameters for the 
different views. Polleyfeys et al. [3] proposed a stratified 
approach that first recovers the affine geometry using the 
modulus constraint and then recovers the Euclidean geometry 
through the absolute conic. Heyden & mostrA

⋅⋅o

[4], Triggs [5] 
and Pollefeys & Van Gool [6] use explicit constraints that 
relate the absolute conic to its images. These formulations are 
especially interesting since they can easily be extended to deal 
with the varying internal camera parameters. 

Recently self-calibration algorithms that can deal with the 
varying camera's intrinsic parameters were proposed. Heyden 
& mostrA

⋅⋅o

[7] proposed a self-calibration algorithm that uses 
explicit constraints from the assumption of the intrinsic 
parameters of the camera. They proved that self-calibration is 
possible under varying cameras when the assumptions that the 
aspect ratio was known and no skew establishes about the 
camera. They solved the problem using the bundle adjustment 
that requires simultaneous minimization on the all 
reconstructed points and cameras. Moreover, the initialization 
problem was not properly presented. Bougnoux [8] proposed a 
practical self-calibration algorithm that used the constraints 
derived from Heyden & mostrA

⋅⋅o

 [7]. He proposed the linear 
initialization step in the nonlinear minimization. He used the 
bundle adjustment in the projective reconstruction step. 
Similarly, Pollefeys et al. [9] proposed a versatile  
self-calibration method that can deal with a number of types of  
constraints about the camera. They showed a specialized 

version for the case where the focal length varies, possibly 
also the principal point. 

In this paper, we propose new initialization method for the 
self-calibration algorithm by using the minimal two images, 
which result in the more stable initial values for the nonlinear 
minimization. This results in the solving of the simultaneous 
equations of the second-order, and gives two solutions that 
have opposite direction in projective space.  

New initialization method for the self-calibration of the 
camera is proposed. Proposed method is based on the 
assumption that the least violation of the camera’s intrinsic 
parameter gives more stable initial value. Synthetic and real 
experiment shows this result. Finally we can have more robust 
self-calibration algorithm based on the proposed initialization 
method 

 
2. SELF-CALIBRATION ALGORITHM 

 
In this section, we review the self-calibration algorithm that 

appears in [8]. The process of projection of a point in 3D to 
the image plane can be represented as the following sequential 
steps: 
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where T represents the transformation of coordinate systems 
from world to the camera-centered system, 0P  is the 
perspective projection and A  consists of the intrinsic 
parameters of camera. 

We use the following assumptions about the intrinsic 
parameters of camera  

vu αα
γ

=
= 0

                  (2) 

It is well known that we can reconstruct a scene up to a 
projective transformation using only the corresponding points 
on the images [10,11]. This can be represented as: 
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where i
jm~  is the j-th point in the i-th image, i

projP  is a 
projective projection matrix of the i-th image and proj

jM
~  is a 
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projective structure of scene point corresponding to the image 
point i

jm~ .  
The projective structure proj

jM
~  is related to the metric 

structure by a projective transformation matrix Q . In Eq. (3), 
any nonsingular matrix Q  satisfies the above relation, so 
there can be many projective reconstructions. There exists a 
unique Q  matrix that transforms the projective structure to a 
metric structure of a given scene. Finding this Q  matrix is 
calibration process. We can obtain the Euclidean projection 
matrix and metric structure of a scene using this unique Q  
matrix.  

proj
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≅
                (4) 

In general, under the pinhole camera model, we can set the 
projective projection matrix of the first camera as 

[ ]33
1 0IP =proj . We have the Euclidean projection matrix of the 

first camera [ ]31
1 0AP =euc  if we set the world coordinate at 

the optical center of the first camera. If we substitute these 
projection matrices in Eq. (4), then we have  
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Here, Q  is defined up to a scale and it can be 
represented as 
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Now Q  matrix contains six unknowns. Next we review 
the constraint for obtaining Q  matrix. 

If we set i
eucP  
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then we have the following constraint for the Euclidean 
projection matrix, eucP . 
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These equations give two constraints for the unknown Q  
matrix for each camera and we can obtain the solution using at 
least 4 images. The resulting problem can be formulated as the 
nonlinear estimation that minimizes Eq. (8) for each camera.  

In [12], we added another constraint which constrain the 
position of the principal point during the nonlinear 
minimization.  

 
3. NEW INITIALIZATION METHOD AND 

DETAILED PROCEDURES 
 
3.1 New Initialization Method 
  

We need initial values to run the nonlinear minimization. 
The cost function of Eq. (8) has many local minima. Thus, it is 
important to have good initial values close to the true ones to 

guarantee the convergence. The initial value by [8] often does 
not guarantee convergence. This is due to the fact that 
least-squares solution under the assumption that intrinsic 
parameters are constant under the varying cameras makes the 
initial values even worse. We propose new initialization 
method for the ( )Tqqq 321 ,, using only two views, thus 
guarantee the least violation of the varying camera situation. 

Euclidean projection matrix can be represented as:  
 

[ ]iii
i
euc tRAP =  

where iA is the matrix consisted of the intrinsic parameters, 
iR  is rotation matrix and it  is translation vector. Also if we 

denote ∗Q  as the first three column of the matrix Q, we can 
derive following relations from Eq. (4). 
 

∗≅ QPRA i
projii                      (9) 

From Eq. (9), it follows 
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kω  is the dual image absolute conic and Ω  is the absolute 
dual quadric. 

From Eq. (10), we obtain 
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We use f computed from the algorithm in [8], and take the 
initial value of the principle point as the center of the first 
image. Then, we are left with four unknowns iλ , ( )Tqqq 321 ,, , 
and Eq. (10) provides 6 equations. We compute the unknowns 
using four equations. Thus, we avoid the false initial value by 
least-squares by overconstrained equations. Experimental 
results support this fact. 
 
3.2 Equalization of the projective basis 
  

At first, projective reconstruction is done using the 
corresponding points. Fundamental matrix between each view 
is obtained using the linear normalization method of Hartley 
[13], then projective projection matrix is obtained using 
Fundamental matrix. Through the triangulation projective 
structure is obtained. Projective reconstruction is done using 
each pair of images such as 1-2, 1-3, …, 1-N. Each projective 
reconstruction has different bases because the five basis points 
in 3P  are not equal in each case. If we use the method of 
Fageraus [12], which explicitly selects the five basis points in 

3P , we can obtain consistent projective reconstruction. But, 
this method is known as sensitive to the selection of five basis 
points and entire process solely depend on the basis selection. 
It is necessary to equalize the projective reconstruction in 
equal basis, because Eq. (3) establishes under equal basis. This 
problem becomes to finding the collineation between two 3D 
projective reconstructions.  

Given fundamental matrix aF  that describe the epipolar 
geometry between two images, there exist a projective basis of 
the projective space 3P  such that the projections from 3P  
space onto the images are represented by two 3X4 projection 
matrices [14,15]: 

 
[ ] [ ]aaa eDP0IP ′′=′= ×× 33333            (12) 

where 33×′D  is a homography matrix and ae′  is the epipole of 
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the second image.  
If xx ′,  are the image point of a 3D point M, we can obtain 

the projective coordinate aX  of point M in the projective 
basis aB  defined by ( )aa PP ′,  using the projection 

aax XPx =λ and aax XPx ′=′′λ . 
Consider another pair of images and corresponding 

fundamental matrix is bF . From this pair, equally we can 
obtain the new projective matrices  

 
[ ] [ ]bbb eDP0IP ′′=′= ×× 33333             (13) 

From this, we can obtain the projective coordinate bX  of 
point M in the projective basis bB  using the projection 

bby XPy =λ and bby XPy ′=′′λ . 
If we have a set of m points, and let their projective 

coordinate m
aaa XXX ,...,, 21  and m

bbb YYY ,...,, 21  be their 
homogenous coordinate in the projective basis aB  
respectively bB . Then, there exists a 4X4 collineation matrix 
H that maps the points i

aX  to the points i
bX : 

 
i
a

i
bi HXX =µ                   (14) 

where iµ  is a scale factor with non-zero values. 
Eq. (14) gives three constraints for each pair ( )i

b
i
a XX , , thus 

we can obtain H which have 15 degrees of freedom using at 
least five point correspondences. This simple linear method is 
sensitive to the noise, which only uses the minimum number 
of points to compute H, thus it is a better method to use all the 
corresponding points to obtain H. 

The following is the linear method in [16]. They showed 
linear, nonlinear, and robust method in finding the collineation 
between two projective reconstructions. They also insist that 
for levels of noise below one pixel in magnitude, the linear 
methods performs as well as the non-linear method and hence 
the linear method should be preferred because it is less time 
consuming than the non-linear method. 

If scale, iµ , is eliminated, three homogenous linear 
equations are obtained as follows:  
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where )( ji
bX  is the j-th component of vector i

bX  and 
( )Tiiiii VVVV )4()3()2()1( ,,,=V , from the vector i

aHX . 
Three additional constraints are introduced, which are not 

independent from the previous ones, to play the same role for 
all four projective coordinates. 
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If we denote ( )THHHH 44131211 ,...,,,=h , the Eq. (15) and Eq. 
(16) can be written in the form: 

0hB =i  

where iB  is 6X16 matrix: 
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i
a XX , , h is obtained through 

the minimization of the following error function: 
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The solution h is the eigenvector of B, ∑
=

=
m

i
i

T
i

1
BBB , 

corresponding to the smallest eigenvector of B, this 
eigenvector can be effectively computed using the Singular 
Value Decomposition.  

Following method for homography between projective 
structure is from the structure of the original projection 
matrices. From Eq. (13), projection matrix of the first camera 
has the form, [ ]333 0I ÷ , and the corresponding projection 
equation on the image is  
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From this projection, projective structure, ( )Tsrqp , has 
the form of ( )Tyx ν1 . The projective reconstruction for the 
same point from the pairs of image 1-2,1-3,…,1-N using the 
projection matrix of Eq. (13) has also the form of ( )Tyx ν1 , 
where the fourth component has different value according to 
the chosen projective basis in 3P . From this particular form 
of the projective structure, the homography between two 
projective reconstructions has the form: 
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In this paper, the homography between two projective 
reconstructions are also computed using Eq. (19). 
 
3.3 Method to get the true value of the plane at infinity 
 

It is necessary to know all the true value of unknown 
parameters to check the proposed algorithm using the 
synthetic image. Except the value of ( )Tqqq 321 ,,=q , all other 
values are easily obtained in the experiment using synthetic 
image. One possible method is to set the value of 

( )Tqqq 321 ,,=q  arbitrary, and then obtains the projective 
projection matrix using the relation 1−≅ QPP i

euc
i
proj . But this 

procedure can't analyze the algorithm from the given 
correspondence. Projective projection matrix is obtained using 
the fundamental matrix, which is computed using the 
correspondence. Thus, other method for computing 

( )Tqqq 321 ,,=q  is necessary to analyze proposed algorithm at 
every step from the very beginning. The method in [16], 
which computes the homography between Euclidean structure 
and projective structure, is used.  

From the known value of intrinsic and extrinsic parameters 
true fundamental matrix is computed, then true projective 
projection matrices are computed. From these projective 
projection matrices, projective structure is computed using the 
correspondence without noise. Finally, ( )Tqqq 321 ,,=q  is 
computed from the homography between Euclidean structure 
and projective structure. 

Let ( ))3()2()1( ,, iiii YYY=Y  be the Euclidean coordinate of a 
point M in 3D under some Euclidean basis EB  and iX , a 
homogenous 4-vector, be the 3D projective coordinates of a 
point M. Using at least 5 corresponding points between iX  
and iY , one can compute the collineation H that maps iX  
onto ( )TT

ii 1YY = . Linear method can be employed to compute 
the collineation H. However, linear method minimizes 
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algebraic distance. In [16], a linear method that minimizes an 
Euclidean rather than an algebraic error function is presented. 
Let the iV  be 
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where ( ) )(i
iHX  is the i-th component of vector iHX . 

The error function, composed of Euclidean distance between 
two points in 3D, to be minimized is  
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It is nonlinear to the parameters of H, thus nonlinear 
optimization method should be employed. Csurka and Horaud 
[16] propose a linear method by minimizing an Euclidean 
distance, which is defined in Fig. 1, in the 4-D vector space. 

 
 
 
 
 
 
 
 
 
Fig. 1 The approximated Euclidean distance id  between 
vectors iY  and iHX  in 4-D vector space. 

 
From Fig. 1 2
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If the following notations are used, 
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then the following error function is obtained. 
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The solution is the eigenvector corresponding to the 
smallest eigenvalue of the positive semi-definite symmetric 
matrix A. 

 
4. EXPRERIMENTAL RESULTS 

 
Fig. 2 represents calibration box and control points used in 

the experiments, and they are acquired by a color CCD camera 
(Sony EVI-300). Calibration box size is 150mm X 150mm X 
150mm. Tsai[17], Bougnoux[8] and proposed algorithm is 
compared. Table 1 shows the estimated initial f and 

( )Tqqq 321 ,,=q . We can see that proposed method gives more 
accurate initial values compared to [8]. Fig. 3 represents first 
and sixth image used in the experiments and the images are 
acquired varying position and focal length of the camera. 

Table 2 shows the estimated intrinsic parameters of the camera. 
Proposed method use additional constraint about the principal 
point[12] and new initialization method. Table 3 and 4 shows 
estimated extrinsic parameters. Bougnoux[8] gives large 
departure from that of Tsai[17] while proposed algorithm 
gives comparable results. Finally Fig. 4 shows the estimated 
3D structure by each algorithm. The unknown scale is set 
using the first control points between Tsai[17] and other two 
methods. After fixing the unknown scale, 3D error by all 
control points compared to the Tsai’s method is as follows: 

Bougnoux[8]: (mean, std)=(83.1,80.9) [mm] 
Proposed algorithm: (mean, std)=(5.91,6.56) [mm] 
 

Fig. 2 Calibration box and control points used in the 
experiments. 
 

 

 

 
Fig. 3 First and sixth image acquired under the variation of the 
position and focal length. 
 
Table 1 Comparison of the estimated initial f and 

( )Tqqq 321 ,,=q  
true value linear method[8] proposed method 
758.9, 
(-50.8,12.3,-36.6) 

637.7, 
(-77.5,0.446,-6.00) 

637.7, 
(-39.7,10.2,-35.1) 

 

iY

iHX

id

WY

WX

WZ
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Table 2 Comparison of the estimated intrinsic parameters 
( )00 ,,, vuvu αα  
 Tsai[17] linear 

method[8] 
proposed 
method 

camera 
1 

(758.9,760.0, 
340.4,230.3) 

(197.4,197.4, 
253.7,229.5) 

(605.6,605.6, 
283.0,237.3) 

camera 
2 

(880.2,881.0, 
352.2,223.2) 

(223.1,222.9, 
364.7,224.3) 

(692.6,691.1, 
340.4,230.3) 

camera
3 

(859.9,861.2, 
366.6,220.8) 

(206.4,206.5, 
339.3,227.6) 

(666.5,666.7, 
332.9,232.0) 

camera 
4 

(1091.6,1094.1, 
332.6,232.1) 

(253.1,253.6, 
330.3,249.0) 

(836.7,835.4, 
311.4,248.6) 

camera 
5 

(1007.1,1007.6, 
335.4,234.7) 

(239.3,239.1, 
303.7,242.3) 

(777.1,775.6, 
298.6,247.4) 

camera 
6 

(1032.0,1034.5, 
326.5,231.5) 

(252.0,252.0, 
418.0,248.8) 

(803.5,800.6, 
350.4,247.2) 

 
 
Table 3 Comparison of the estimated rotation ( )zyx θθθ ,,  
between camera i and j. 

 Tsai[17] linear method[8] proposed method
1-2 (-1.03,-15.4,-4.07) (-0.263,-3.97,-3.87) (-0.869, -12.2,-4.10)
1-3 (1.51,-9.61,-2.66) (0.372,-2.54,-2.85) (1.12,-7.89,-2.84) 
1-4 (1.04,-15.7,-3.25) (0.265,-3.98,-3.43) (0.747,-12.7,-3.46)
1-5 (1.47,-11.1,-1.94) (0.375,-2.90, 2.15) (1.13,-9.06,-2.14) 
1-6 (0.895,-23.6,-4.39) (0.233,-5.90,-4.53) (0.661,-18.6,-4.62)
 
 
Table 4 Comparison of the estimated translation between 
camera i and j. 

 Tsai[17] linear method[8] proposed method 
1-2 (-0.970,0.070,0.234) (-0.996,0.071,0.061) (-0.980,0.068,0.189)
1-3 (-0.688,-0.149,0.710) (-0.945,-0.217, 0.244) (-0.753,-0.178, 0.633)
1-4 (-0.755,-0.034,0.655) (-0.979,-0.055,0.197) (-0.827,-0.047, 0.560)
1-5 (-0.740,-0.119,0.661) (-0.964,-0.163,0.209) (-0.808,-0.141,0.572)
1-6 (-0.864,-0.078,0.497) (-0.987,-0.091,0.131) (-0.912,-0.087,0.401)
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Fig. 4 Estimated 3D structure by Tsai[17], Bougnoux[8], and 
proposed algorithm. 
 

5. CONCLUSION 
 

New initialization method for the self-calibration using the 
minimum 2 view is presented. Proposed method is based on 
the assumption least violation about the camera gives more 
accurate initial values for the self-calibration. Experimental 
results using calibration box shows this fact. 

Future research will focus on the behavior of plane at 
infinity in the self-calibration.  
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