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Abstract: Toward the development of practical methods for observed data oriented bispectral estimation, an automatic means for 
determining the smoothing bandwidth of bispectral windows is proposed, that can also provide an associated optimum bispectral 
estimate of stationary non-Gaussian signals, systematically only from an observed time series datum of finite length.  For the 
conventional non-parametric bispectral estimation, the MSE (mean squared error) of the normalized estimate is reviewed under a 
certain mixing condition and sufficient data length, mainly from the viewpoint of the inverse relation between its bias and variance 
with respect to the smoothing bandwidth.  Based on the fundamental relation, a systematic method not only for determining the 
bandwidth, but also for obtaining the optimum bispectral estimate is presented by newly introducing a MSE evaluation index of the 
estimate only from an observed time series datum of finite length.  The effectiveness and fundamental features of the proposed 
method are illustrated by the basic results of numerical experiments.    
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1. Introduction 
 
Since the 1st International Workshop on Higher Order Spectral 
Analysis was held at Vail, Colorado, U.S.A. in 1989 [1], its 
applicability to many practical problems has been re-recog- 
nized widely in broad areas.  Actually, the applications of bi- 
spectral and trispectral analyses, i.e., the lowest two of the 
higher order one with the 3rd and 4th orders, are rapidly evol- 
ving in signal processing areas in science and engineering; 
geophysical, medical, mechanical, acoustical, and optical 
science and/or engineering fields, and so on [2].  
Correspondingly, parametric and non-parametric methods for 
bispectral estimation of stationary non-Gaussian random sig- 
nals have been developed [3].  Although both methods res- 
pectively have their intrinsic characters, however, each of them 
has a certain problem to be improved, especially from the 
viewpoint of observed data oriented estimation, i.e., the auto- 
matic optimum estimation only from an observed time series 
datum of finite length.   
This paper is concerned with the conventional non-parametric 
stationary bispectral estimation based on smoothing the 3rd 
order periodogram [4]-[7].  Although a few methods for the 
optimum estimation are proposed, any of them optimizes a 
certain criterion to determine the optimum shape of bispectral 
windows under the assumption that the smoothing bandwidth 
is given beforehand [6],[7].  For actual estimation, however, 
determination of the optimum bandwidth is considered to be 
more important than that of the optimum shape, since the bias 
and variance, and hence, MSE of a bispectral estimate, are 
usually governed globally by the former.  Therefore, the aim 
of this paper is to propose an automatic means for determining 
the optimum smoothing bandwidth only from an observed 
time series datum of finite length.   
For the purpose, we propose an evaluation index of the MSE 

of a bispectral estimate, by focusing on a mutually reverse 
relation between its bias and variance with respect to the 
smoothing bandwidth of bispectral windows under a certain 
mixing condition about the signal BSD (bispectral density 
function, or simply bispectrum) as well as sufficient data 
length for observation [4].  The proposed MSE index is devi- 
sed through normalization to be independent to magnitudes of 
estimated PSD (power spectrum) and BSD values, since its 
variance at each point in the 2D-frequency (bispectral) plane is 
proportional to a triple product of associated 3 PSD values to 
be estimated.  As a result, the proposed index may be expec- 
ted to be uniform or white over the whole bispectral plane, 
once a nearly optimum bandwidth is reached under the re- 
quired conditions.  So, simple averaging of the index values 
within a certain range in the 2D-frequency plane makes a 
systematic determination of the optimum smoothing band- 
width possible with reduced sampling variation, resulting in 
the proposed automatic estimation only from an observed time 
series datum of finite length.   
The above reverse relation between the bias and variance of 
BSD estimates was also used by the conventional methods to 
determine the optimum shape of bispectral windows [6], [7].  
However, it is used for automatic determination of the optim- 
um smoothing bandwidth of the windows toward the final aim 
of this paper mentioned above.  This is the fundamental 
difference between the proposed optimum BSD estimation and 
the conventional [6], [7]. 
In what follows, after a brief review of the conventional BSD 
estimation by smoothing the 3rd order periodogram, the funda- 
mental reverse relation between bias and variance of a BSD 
estimate with respect to the smoothing bandwidth is made 
clear in section 2.  Based on the characteristics, a practical 
index for evaluating the associated MSE only from an obser- 
ved time series datum is proposed in section 3.  In section 4, 



 

 

the effectiveness and fundamental features of the proposed 
estimation are illustrated by basic results of numerical expe- 
riments.  Finally, the obtained main results are summarized. 
 
2.  A Brief Review of BSD Estimation by Smoothing 

 the 3rd Order Periodogram 
 
Let x(t) be a real 6th order stationary zero-mean non-Gaussian 
random signal with a non-zero bispectrum B(f1,f2), and x(n) 
(n=0,1,…,N-1) be a sampled time series of x(t) every T 
seconds over an observed time interval [0,T0sec], i.e, T0=NT.  
Then, the 3rd order sample correlation (or cumulant) function 
R3(τ1,τ2) can be estimated in the biased form as  

2

1

3 1 2 1 2

1 2 1 2                  | | |  

1
( , ) ( ) ( ) ( ),  

                         ( (1)|, |, + | 1),

N

n N

R x n x n x n
N

Nτ τ τ τ

τ τ τ τ
=

= + +

≤ −

∑

where N1≡max{0,-τ1,-τ2}, and N2≡ N-1+min{0,-τ1,-τ2}.  The 
2D-DTFT (discrete time Fourier transform) of R3(τ1,τ2) gives 
an associated sample BSD or the 3rd order periodogram as  
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As is well known, this BT(f1,f2) can be rewritten as [4] 
*
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where A* denotes a complex conjugate A, and XT(f) is the 1D- 
DTFT of x(n) defined by 
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The equations (2) to (4) suggest that the periodogram BT(f1,f2), 
and hence, the signal BSD B(f1,f2) mathematically depend im- 
plicitly on an extra component of frequency -(f1+f2) as well as 
explicitly on those of frequencies f1 and f2, because the relation 
XT(-f)=XT

*(f) is valid for a real-valued signal, as is well known 
from the Fourier theory. 
D. R. Brillinger etal. [4] generally evaluated the asymptotic 
properties of the k-th order periodogram (k≥2), asserting the 
3rd order one as a BSD estimate under the mixing condition, 
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This means the smooth characteristics of signal BSD B(f1,f2), 
of which partial derivatives up to the 2nd order are finite.  
Under this condition, the following statistical properties of 
BT(f1,f2) are derived according to the asymptotic theory : 
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These properties reveal the difficulty for simply using BT(f1,f2) 

as a BSD estimate.  That is, (i) Contrary to the nearly un- 
biased nature of BT(f1,f2) as observed from Eq. (6a), (ii) Eq. 
(6b) says that its variance may be subject to a triple product of 
powers of associated 3 frequency components.  Since infor- 
mation of random signals is usually extracted from the esti- 
mated PSD peaks, the result of (ii) suggests that large sample 
variation may be aroused for such values of BT(f1,f2), at least 
one of the associated 3 frequencies of which being equal to 
any of the dominant peaks, resulting in the above assertion for 
use of BT(f1,f2) as a BSD estimate.  However, (iii) Eq. (6c) 
does that BT(f1,f2) and BT(f3, f4) may be uncorrelated (even 
asymptotically “independent” [4]), when absolute differences 
of frequency pairs, i.e., |f1-f3| and |f2-f4|, or |f1-f4| and |f2-f3| are 
separated by more than an inverse of an observed data length, 
i.e., 1/T0.   
The rather large sample variation described in (ii) may be con- 
sidered as a result of lack of time averaging accuracy when at 
least one of the two absolute lags |τi|s (i=1,2) becomes nearly 
equal to its maximum, i.e., N-1.  This fact and the uncorre- 
lated nature of different BT(f1,f2)s described in (iii) suggest that 
the more precise estimate can be expected by truncating the 
low accuracy portion of thus calculated R3(τ1, τ2) with a 2D- 
lag window w2(τ1,τ2), and 2D-discrete time Fourier transfor- 
ming the resultant as follows: 
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where M denotes the maximum lag used for the estimation, 
and should be chosen to be less than a squared root of T0 [4].  
Equivalently, Eq. (7) can be rewritten in Fourier domain as  
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where W2(f1,f2) is the bispectral window defined by the 2D- 
DTFT of w2(τ1,τ2).   
Usually, the 2D-lag window w2(τ1,τ2) is chosen so as to have 
the properties bellow [6],[7].   
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where the last equation is the normalization condition derived 
from the Fourier theory, and means that integral of the bispec- 
tral window W2(f1,f2) in the whole 2D-frequency plane being 
equal to a unity.  Similarly, W2(f1,f2) is assumed to satisfy the 
same symmetry as that of B(f1,f2), and be non-negative [6],[7], 
because the bias of estimated BSD might be controlled freely 
if negative values would be allowed for it, and hence, the bias 
itself loses its intrinsic meaning [6].  That is, 
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Under the mixing condition for the BSD given by Eq. (5), and 



 

 

sufficient data length compared with an inverse of the band- 
width of the narrowest peak, the bias of the smoothed BSD 
estimate is evaluated in the followings:  From the unbiased 
nature of BT(f1,f2), we have 
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By expanding the 2nd term of the integrand in the right side of 
Eq. (10a) into a Taylor series including up to the 2nd order 
partial derivatives of B(f1,f2), with aids of the assumed symme- 
try and normalization condition of W2(f1,f2), the bias of the 
smoothed BSD estimate can be evaluated by the next equation, 
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where Bi,j(f1,f2) (i+j=2) denotes the the ith and jth partial 
partial derivatives of B(f1,f2) with respect to f1 and f2, respect- 
tively, with the total 2nd order, and ,i j

WB s (i+j.=2) are the 
similar 2nd order moments of W2(f1,f2) defined as  
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On the other hand, from the uncorrelated nature of BT(f1,f2) 
given by Eq. (6c) and the physical meaning of BSD B(f1,f2), 
the variance of the smoothed estimate given by Eq. (7) or (8) is 
also evaluated [6],[7] as  
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By taking into account the normalization condition of W2(f1,f2), 
Eq. (10a) means that the magnitudes of ,i j

WB s in Eqs. (11a) 
and (11b) increase with the bandwidth of W2(f1,f2), while the 
energy in Eq. (12) decreases with it.  These facts clearly 
reveal the fundamental reverse relation between the bias and 
variance of the smoothed BSD estimate with respect to the 
smoothing bandwidth, as mentioned previously.   
 

3.  Proposed MSE Evaluation Index of  
Smoothed BSD Estimate 

 
Eqs. (12) and (10b) imply that the variance of the normalized 
smoothed BSD estimate is proportional to a ratio of the triple 
product of associated 3 PSD values to the squared magnitude 
of BSD, the energy EW of a bispectral window W2(f1,f2), and a 
given data length T0, while its bias is the summation of a half 
of a product of the 2nd order moment of W2(f1,f2), the 2nd 

order partial derivative of the signal BSD with respect to a 
single or double frequency indices, and an inverse of the BSD 
magnitude.  Thus, replacing the signal PSD and BSD values 
by the corresponding estimates, and approximating the 2nd 
order partial derivatives with the corresponding differences 
give the next indices to evaluate the normalized statistics. 
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where ∆f denotes a certain frequency increment for difference 
calculation, say, a half-valued bandwidth of a bispectral win- 
dow W2(f1,f2).  As clearly observed from Eq. (14b), the vari- 
ance of the estimate also includes the estimated PSD values at 
associated 3 frequencies.  For the PSD estimation, the obser- 
ved data oriented automatic estimation proposed previously by 
smoothing the periodogram [8] can also be used separately. 
To evaluate these indices, and hence, the MSE index only from 
an observed time series datum, any averaging is required to 
suppress the sampling variation.  Since the normalized esti- 
mate discussed above may be expected to become white, ave- 
raging over a certain 2D-frequency range available is consi- 
dered in this paper, resulting in the following proposed indices: 
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where Av,f represents the associated averaging in the available 
2D-frequency range.   
By following to the above scheme, once a sample time series 
is given, with a form of the bispectral window being assumed 
a priori, the minimum MSE makes an automatic determination 
of the optimum smoothing bandwidth of a bispectral window 
possible, so that the optimum BSD estimate may be obtained.  
This is the principle of the automatic determination of the 
smoothing bandwidth to establish an observed data oriented 
BSD estimation proposed in this paper.    
 

4. Results of Numerical Experiments 
 
4. 1 Experimental conditions 
To confirm the effectiveness and fundamental characteristics 
of the proposed automatic BSD estimation, basic numerical 
experiments are carried out by using a zero-mean stationary 



 

 

non-Gaussian time series, the theoretical PSD and BSD cha- 
racteristics of which are clearly known.   
Throughout the following experiments, sampling frequency 
fs=1/T is assumed to be fixed as 22.05 kHz, and an observed 
time series x(n) is numerically generated by the stable AR- 
model of the 6-th order, 
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where ε(n) is a zero-mean white noise of uniform BSD [9], 
[10].  That is, its 3rd order cumulant function is given by  
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where 2 ( , ), and ( )δ δ⋅ ⋅ ⋅  denote the 2D- and 1D- Kronecker’s 
deltas, respectively.  Furthermore, the system function of the 
AR-filter is assumed to simply consist of 3 elementary stable 
2nd order oscillatory AR-filters as follows: 

where 3 pairs of complex conjugate poles (zk and *

kz ) (k=1,2, 
3) being located at such points in the z-plane that the asso- 
ciated center frequencies have 2kHz, 4kHz, and 8kHz for a 
sampling frequency fs=22.05kHz, and the corresponding radii 
of the poles from the origin are chosen as 0.6, 0.7, and 0.8, 
respectively, each value of which controls the half power 
bandwidth of the PSD peak of the corresponding 2nd order 
AR-oscillatory system.   
Therefore, the theoretical PSD and BSD of thus generated time 
series are correctly known and given by [3] 
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For the power and bispectral windows of non-negative values 
in both time and frequency domains and the required symme- 
tries, Bohman’s standard window for PSD estimation is used.  
That is, the lag and spectral windows are given by [6], [8] 
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By using them, as a class of 2D-windows which satisfy the 
previous requirements, simple types of 2D-lag and bispectral 
windows are considered by the next construction [6],  
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where ⊗  denotes a 2D-conboluion integral.   
 
4.2 Method of numerical experiments 
As stated previously, the optimum maximum lag or smoothing 
bandwidth of the windows may be different for the PSD and 

BSD estimation.  So, the automatic PSD estimation is first 
applied, and the proposed automatic BSD one is carried out by 
using the estimated optimum PSD.    
At that time, because the accuracy to estimate the 2nd and 3rd 
order sample correlation functions given by Eq. (1) is essen- 
tially important and heavily depends on an observed data len- 
gth, basic experiments are carried out by parametrically chan- 
ging the number of observed time series datum N, or equiva- 
lently observed data length T0=NT, since sampling period T is 
fixed as constant.  Moreover, the FFT based method with 
adequate zero-padding is used to keep a frequency interval 
between estimated consecutive PSD or BSD values constant 
against the change of N.  The optimum maximum lag of the 
window is automatically searched to get the minimum MSE 
value within a certain range of lags designated beforehand.   
 
4.3 Basic results of numerical experiments 
As an example, the results for the automatic PSD estimation, 
when the number of time series datum N being changed from 
2048 to 16384, are shown in Fig. 1, where broken, broken with 
a dot, and solid lines represent the bias, variance, and MSE 
indices, respectively, and the minimum point of the MSE index 
is dsignated by an asterisk for all the cases examined.  
From these results, it is confirmed that the proposed evaluation 
indices of the PSD estimate works well for the stationary time 
series of non-zero BSD, too.  Moreover, the obtained opti- 
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Fig. 1 Characteristics of the proposed indices against  

the smoothing bandwidth of the power spectral 
        window, where (a), (b), (c), and (d) represents  
        the results for N=2048, 4096, 8192, and 16384, 
        respectively, with a sampling period T=0.045ms,  

and an asterisk denotes the optimmum bandwidth  
corresponding to the minimum of the MSE index.  
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mum smoothing half-power bandwidth gradually decreases 
from about 3.28kHz to 1.19kHz with increase of N from 2048 
to 16384.  In this case, a half-power bandwidth of the narro- 
west peak can be predicted as |ln0.8|/(πT)≅ 1.56kHz, which 
nearly coincides with that of the optimum smoothing band- 
width 1.54kHz for an observed data length T0=8192T=732ms.   
Correspondingly, Fig. 2 graphically shows a few typical exam- 
ples of the estimated PSDs in a case of N=8192, where broken 
lines denote the theoretically expected PSD, a solid line in (a) 
represents the periodogram, and those in (b), (c), and (d) are 
the results estimated by too narrow, optimum, and too broad 
smoothing bandwidths, respectively.   
From comparison of these results, the following features are 
clearly observed.  Although the periodogram in (a) suffers 
from heavy sample variation, it comes to be suppressed in the 
estimated PSDs shown from (b) to (d) as the smoothing band- 
width of the spectral window becomes broad.  However, the 
estimated PSD in (d) shows rather reasonable bias due to the 
excess smoothing, while that in (b) also suffers from reason- 
able sampling variation yet due to the lack of smoothing.   
As a result, the PSD estimated with the optimum smoothing 
bandwidth in (c) may provide the most precise estimate.   
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  Fig. 2 Typical examples of estimated PDSs in a case 
of N=8192, where broken lines represent the  
theoretically expected PSD, a solid line in (a) 
denotes the sample periodogram, and (b), (c),  
and (d) are the PSDs estimated with too narrow, 
optimum, and too broad smoothing bandwidths, 
respectively.  The half-power smoothing band- 
widths in (b), (c), and (d) are 0.266kHz, 1.54 
kHz, and 2.62kHz, respectively.  

These results illustrate well the fundamental characteristics of 
the previously proposed observed data oriented PSD estima- 
tion by automatic determination of the smoothing bandwidth 
of power spectral windows. 
Correspondingly, Fig. 3 shows the characteristics of the propo- 
sed evaluation indices of the BSD estimate against the smoo- 
thing bandwidth of a bispectral window under the same con- 
dition as that in Fig. 1.  And typical examples of contour 
displays of the estimated BSDs for N=8192 are shown in Fig. 
4, where (a) represents the theoretical BSD, (b) is the sample 
BSD, and (c), (d), and (e), are those estimated with too narrow, 
optimum, and too broad smoothing bandwidths of the bispec- 
tral window, respectively. 
From comparison of these results and those in Figs. 1 and 2 for 
the PSD estimation, the following aspects may be observed:  
(i) As a whole, the proposed automatic BSD estimation works 
well, almost equivalently to that for the PSD shown above.  
(ii) However, when the number of observed time series datum 
N is large, the optimum bandwidth of the window results in 
rather broad values compared with those for the PSD estima- 
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 Fig. 3 Characteristics of the proposed indices against  

the smoothing bandwidth of the bispectral win- 
        dow, where (a), (b), (c), and (d) represents the 
        results for N=2048, 4096, 8192, and 16384, res- 
        pectively, with a sampling period T=0.0454ms,  

and an asterisk denotes the optimmum bandwidth  
giving the minimum of the MSE index  
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                         Fig. 4 Examoles of contour dis- 
                              plays of estimated BSDs 

of the AR-model in case 
                              of N=8192, where (a) is 
                              the theoretically expec- 

ted BSD, (b) is the sam-  
ple BSD, and (c), (d) and 

                              (e) are the BSDs estima- 
ted with too narrow, op- 

                              timum, and too broad  
bandwidth of the win- 
dow, respectively. 

  
tion, and (iii) the minimum MSE index also stays at rather 
large value.  (iv) Although the minimum point of the MSE is 
more clear than that for the PSD estimation, its peak value at 
(4kHz,4kHz) in the fundamental bispectral plane is not clearly 
observed.   
The reason for the aspects of (ii) to (iv) is surmised as the 
result that the magnitude and bandwidth of the BSD peak is 
generally determined by a triple product of associated fre- 
quency components, so that the small peak at the above 2D- 
frequencies are obscured by rather a broadband peak at 4kHz 
of the PSD as seen from the PSD characteristics in Fig. 2.   
 

5. Conclusions 
 
Toward the development of observed data oriented BSD esti- 
mation methods, an automatic determination of the smoothing 
bandwidth of bispectral windows is proposed by newly intro- 
ducing the MSE evaluation index of BSD estimates, based on 
the mutually reverse relation between the bias and variance of 
the conventional non-parametric BSD estimate by smoothing 
the 3rd order periodogram.  And the effectiveness of the 
propo- sed method is confirmed through the basic results of 
numerical experiments by using a numerically generated 
stationary non- Gaussian time series of non-zero BSD, the 
theoretical charac- teristics of which are known clearly.   
However, not only the obtained minimum value of the MSE 

index is relatively large, but also its bandwidth of the optimum 
BSD peak is rather broad compared with those resulted by the 
previously proposed automatic PSD estimation due to the 
triple product effect of the BSD characteristics, resulting in 
missing of the relatively small peak in the signal BSD even 
with the obtained optimum smoothing bandwidth.  These 
aspects show the difficulties and/or limitations of the BSD 
estimation based on the non-parametric method by smoothing 
the 3rd order periodogram.  The possibility to overcome these 
problems by additional use of the parametric BSD estimation 
method is now under study.  The detailed results will be 
reported in near future.   
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