
 ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea
FPGA real-time calculator to determine the position of an emitter

M.Tamura∗ , T. Aoyama

The Faculty of Engineering, Miyazaki University, Japan
Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan

(Fax: +81-0985-58-7411; *E-mail: tgb321u@student.miyazaki-u.ac.jp)

Abstract: To detect motions of bodies, we have discussed them with two viewpoints; one is a detection algorithm,
and another is the hardware implementation. The former is to find small terms expansions for sine/cosine functions.
We researched Maclaurin and optimum expansions, and moreover to reduce hardware amounts, revised the
expansions. The expansions don’t include divide calculations, and the error is within 0.01%. As for the former
problem, there is another approach also; that is the cordic method. The method is based on the rotation of a vector on
the complex plain. It is simple iterations and don’t require large logic. We examined the precision and convergence of
the method on C-simulations, and implemented on HDL. The later problem is to make FPGA within small gates. We
considered approaches to eliminate a divider and to reduce the bit number of arithmetic. We researched
Newton-Raphson’s method to get reciprocal numbers. The higher-order expression shows rapid convergence and
doesn’t be affected by the initial guess. It is an excellent algorithm. Using them, we wish to design a detector, and are
developing it on a FPGA.

Keywords: FPGA, HDL, cordic, divider, reciprocal numbers, sine-function, cosine-function, optimum expansion

1. INTRODUCTION

It is meaningful that determines equation of motions
on real time, and predicts the locations of objects in
future. Where, we must determine the locations
currently; it is a necessary condition. We believe that
the limitation of software means would become
conspicuous. We pay attention to Hardware Descriptor
Language (HDL) and Field Programmable Gate Array
[1] (FPGA). They are techniques that make layout of
field-programmable LSI. Using them, we can plan and
design small scale computing resources. However, they
must be designed under some restrictions; i.e., the
number of bits, elimination of complex functions,
annihilation of division, and so on. Our objective is to
avoid these restrictions by developing new techniques
and to equip them on FPGA.

LSI implementations of complex functions are
interesting research, which causes deep understanding
of algorithms. In this paper, we try to develop one-chip
calculator to determine the position of an emission
source. It is development of means to find status in a
space; and it is also a step for non-destruction
examinations.
 We defined the chip’s specifications as followings.
(1) There is a space, which includes an object. The
object emits radiation randomly. Increasing the distance
from a source, the radiation intensity decreases toward
zero non-linearly.
(2) Two detectors are set to detect the radiation.

The detector’s locations are fixed beforehand.
(3) On such a system, we wish to determine current
positions of a moving object, and want to make the size
of a calculation-unit minimize.
(4) We wish to shorten the developing terms and costs.
Thus, we adopted a FPGA of 20[KG].

2. DETERMINATIONS OF LOCATIONS

Some determination methods for current locations of
moving objects are known. A general procedure is based
on the triangulate; that is, we define a triangle (figure
1).

Fig 1. Geometry of an object and two detectors.

The problem is defined as “evaluate unknown variables
x, y, m, and under the following conditions.”
L=x+y, (1)
x=n∗ cos(θ), (2)
y=m∗ cos(φ), (3)
n∗ sin(θ))=m∗ sin(φ). (4)

Now, we show a scheme to evaluate the variables.
From eqs. (1-3), we get,
n∗ cos(θ)+ m∗ cos(φ)=L. (5)
So, we obtain “n” as,
n={L- m∗ cos(φ)}/cos(θ). (6)
Then, we get,
m={sin(θ)/sin(φ)}{L- m∗ cos(φ)}/cos(θ), (7)
m[1+{sin(θ)/sin(φ)}{cos(φ)/cos(θ)}]

={sin(θ)/ sin(φ)}{L/cos(θ)}. (8)
Therefore,
m={sin(θ)/sin(φ)}{L/cos(θ)}/[1+{sin(θ)/sin(φ)}
{cos(φ)/cos(θ)}]
={L/cos(θ)}/[{sin(θ)/sin(φ)}-1+{cos(φ)/cos(θ)}].

(9)
Considering the right side of eq. (9), the major term is
1/cos(θ). The term controls a distance between an
object and two detectors. If the object is separate from
the detectors, the argument is θ → π /2. On the limit,
high precision calculation of 1/cos(θ) is required. For
the calculation, we adopt,
1/cos(θ)=1/sin(π /2-θ). (10)
We rewriteπ /2-θ =z, and,
1/sin(z), z → 0. (11)
The term can be evaluated by Maclaurin expansion.
Thus, for infinitesimal small z, we get,
sin(z)=z -z3/6 +z5/120. (12)
1/sin(z)=1/(z -z3/6 +z5/120)=(1/z)+R. (13)
The eq. (13) is so accurate; in an interval, 0<z<π /64,
we get,
1/sin(z)=(1/z)+z/6. (14)
The precision of eq. (14) is O(-7). The eq. (14) must be
implemented by HDL and FPGA; it is not so easy
problem. The term 1/z cannot be expanded by
polynomials but be expressed by iterations. The
expression will be discussed in section 4.

The term, cos(φ)/cos(θ), can be rewrite by relation,
φ =θ + ε < π /2; therefore, the term becomes 1/1 on the
limit. Thus, there is no problem for the precision.
The term, 1/{sin(θ)/sin(φ)}, is;
1/{sin(θ)/sin(φ)}= sin(φ)/sin(θ)=sin(θ + ε)/sin(θ)
={sin(θ)cos(ε)+cos(θ)sin(ε)} /sin(θ)
= cos(ε)+sin(ε)/tan(θ)~ cos(ε)~1. (15)
Therefore, there is no problem. So, we get,
m={L/cos(θ)}/[{sin(θ)/sin(φ)}-1

+{cos(φ)/cos(θ)}]→L/{2cos(θ)}, (16)
and we get for variable “n”,
n=[L-{sin(θ)/sin(φ)}{L/cos(θ)}/[1+{sin(θ)/sin(φ)}
{cos(φ)/cos(θ)}] ∗ cos(φ)]/cos(θ). (17)
Here, we check an influence of small bit number.
In case of θ = φ , eq. (16) is,
m=(1/2)cos(θ). (18)
We calculated eq. (18) in 10-bits numerical calculations,

and got figure 2.

Fig 2. Error curve in case of 10-bits calculations for
eq.(18).
The point “1” on horizontal axis is 87.19 [deg], and
point “65” is 89.96 [deg]. The notch on horizontal axis
is 0.04327[deg]. In the region θ <89.44 [deg], the error
of distances between object and detector is lower than
unit length L=1.

On θ =89.44[deg], the distance is ~51; therefore, the
calculation error is lower than (+/-)0.02, until 50 times
far of unit length. The results are got as ability of the
algorithm. If we used 10-bits calculations, the
resolution is 1/210=0.00098~O(-3). The discrete error is
20 times smaller than that of the algorithm error.

3. FPGA EXPRESSIONS OF TRIANGULAR

FUNCTION

When triangular functions are implemented on FPGA,
various algorithms are known [1]. We researched them
on viewpoints, hardware amounts, precision,
annihilation of divide, and so on.

3.1 MaClaurin expansions

Maclaurin expansions for triangular functions are,
sin(x)=x-x3/6+..., (19)
cos(x)=1-x2/2+x4/24-.... (20)
Here, we calculated them in interval 0<x<π /2.
In eqs.(19, 20), there is no divide calculation. Constants,
1/6 and 1/24, are executed as multiply of finite decimals.
If we use 32-64 bits floating-point numbers, eqs. (19,
20) are practical in interval 0<x<π /4.

Fig. 3 Precision of sin(x)=x-x3/6.
The point “1” on horizontal axis is 0 [deg], and point

“65” is 90 [deg]. The notch on horizontal axis is 1.406
[deg]. In region π /4<x, the expression has not
practical accuracy.

3.2 Optimized expansions
Optimized expansions [2,3] replaced by power series of
2.
Optimized expansions are excellent algorithm; however,
they require floating-point numbers more than 32-bits.
They may be developed for integrated functions in
mathematical library. The hardware is larger amount.
We wish to reduce them without decline of the precision.
We tried some algorithms and examined the characters
under the following conditions.
(1) Replace coefficients to power of 2.
(2) The highest power of x is set to be 3.
(3) Revise the precision of 2-terms Maclaurin expansion,
sin(x)=x-x3/6.
(4) Expand effective region to be over π /4.
Finally, we get an expression; that is,
sin(x)=x-x2/32-x3/8. (21)

Fig. 4 Precision of sin(x)=x-x2/32-x3/8.
The point “1” on horizontal axis is 0 [deg], and point
“65” is 90 [deg]. The notch on horizontal axis is 1.406
[deg].

In whole region, calculation error is almost lower
than 1%. The precision is 7 times high compared with
original Maclaurin expansion (figure 3), and moreover
the coefficients are calculated by a shifter. We also
found an expression, sin(x)=(1-1/512)x-x2/32-x3/8.
This expansion gives error under 0.8% in whole region;
however, this gives low precision nearby x=0. Therefore,
we didn’t use it.

3.3 Cosine expoansions
Mathematically, cosine function is same characters for
sine functions. However, on the optimized expansions,
the both functions are not equal. We tried the precision
of cosine function expansions. That is, we selecte an
simple expression, cos(x)=1-x2/2, and calculate it. The
results are shown in figure 5.

Fig. 5 Precision of cos(x)=1-x2/2.
The point “1” on horizontal axis is 0 [deg], and point
“65” is 90 [deg]. The notch on horizontal axis is 1.406
[deg].

In whole region, calculation error is lower than 0.1%.
The expression is very simple one; however, the
precision is 10 times high compared with sine optimized
expansion (figure 4). The expansion has high precision
extremely, error=0.02%, in interval x<π /4.
We got more accurate expression, cos(x)=1-x2/2+x3/64;
the precision is following.

Fig. 6 Precision of cos(x)=1-x2/2+x3/64.
The point “1” on horizontal axis is 0 [deg], and point
“65” is 90 [deg]. The notch on horizontal axis is 1.406
[deg].

In whole region, calculation error is lower than 0.01%.
The precision is 100 times high compared with sine
optimized expansion (figure 4). Moreover, the error
near x=π /2 is low; this is an useful character.

3.4 Cordic algorithm

The cordic algorithm [4] emulates the function value
as a vector on the complex plane. It rotates the vector by
operating a complex number, and after the iterative
rotations, it gives the function value as the real-part of
the vector. The values of sine, cosine, co-tangent,
hyperbolic-sine, hyperbolic-cosine, exponential, and
logarithm functions can be obtained by the algorithm by
changing of an initial value and the convergence
conditions. The algorithm can be implemented in a
small-scale circuit comparatively. So, scientific-
calculators often build in it. It is a notified algorithm; so,
we researched the realization.
To simplify the discussions, we limit to sine and cosine

functions. The outline of the algorithm is followings.
It thinks about a unit vector f with the argument θ on

a starting point. We write the real and imaginary parts as
x and y.





=
=

θ
θ

sin
cos

y
x









=

=+

−

x
y

yx

1

22

tan

1

θ

Here, an initial guess is θ =0, x=1, and y=0. It is
assumed that target phase angle t is given as an
argument of the requested function. It thinks making it
to t→= 0θ by rotating vector f. Here, the operator
where the angle α is rotated to the vector on the
complex plane will be defined, and it be called
correction vector g. This conversion can be described as
follows by the procession form.

fg ⋅=















−

=








+

+

n

n

n

n
y
x

p
p

y
x

1
1

1

1
δ

δ

Parameter p decides the direction of conversion
(direction of the rotation). And it is 1or-1. The absolute
value of vector f is done by this conversion in the

21 δ− time.

Here, the parameter δ is provided as follows.
L8/1,4/1,2/1,1)1(2 =−−= nδ

We show the expression of the change in the phase angle
as follows.

αθθ +=+ nn 1))(tan(1 δα −=

After all, this conversion and multipling vector g that

length is 21 δ− , and the phase angle is α is same.

Sign p in the direction of the phase angle degree
correction is made a sign opposite to t−θ . This vector
rotation is repeated until error margin)(t−θ becomes
small enough. The absolute value of function vector f
leaves one, and is finally as follows.

2

1

222

2
11

4
11

2
11

1
11 








+××






+×






+×






+=

−n
Lf

 L646760258.1≈
This value steadies without any relation to t.

L
L

60725.0
646760258.1

1
==f 060725.0 j+= Lf

Then, the absolute value of an initial value of f is
assumed to be this reciprocal, and it is assumed initial
phase 0=θ . We get the last settling result.

A trigonometric value was obtained by becoming real
part is cos t and imaginary part is sin t of f.

3.4.1 Verification of accuracy of cordic algorithm
We verified accuracy of the cordic algorithm by using

C program. The objects are;
(1) dependency of iterations for accuracy,
(2) dependency of significant digits,
(3) number of iterations to get precision of 3-digits.
Concerning to (1), we simulated the codic algorithm for
sine-function. Thus, we calculated sine-function values
from 0 to π/2, on 10-25 iterations. We examined the
limit of error for average and maximum ones.

Fig. 7 Limit of average error.
Horizontal axis is the number of iterations. The numbers
on vertical axis show limit of average error for various
arguments.

Fig. 8 Limit of maximum error.
Horizontal axis is the number of iterations. The numbers
on vertical axis show limit of maximum error for
various arguments.

Concerning to (2), we simulated sine-functions for some
digits, that is 1 to 5 significant digits. The arguments of
the sine-function are 0 to π/2. The number of iterations
is 25. We examined the limit of error for average and
maximum. We adopted the following approximation for
the test. The approximation C-language-cords are
following;
a = x * F + 0.5;
x = a;
x = x / F;
Where “a” is an integer variable of 4B, and “F” is a
IEEE-real variable of 8B. We use Fs in interval
[1,10000], by decreasing of calculation-precision,

simulate the movements.

Fig. 9 Limit of average error.
Horizontal axis is plotted by significant digits in the
decimal. The numbers on vertical axis show limit of
average error for various arguments of sine-function.

Fig. 10 Limit of maximum error.
Horizontal axis is plotted by significant digits in
decimal. The numbers on vertical axis show limit of
maximum error for various arguments of sine-function.

Concerning to (3), we simulated the cordic algorithm
for sine-function. The simulations were executed from
arguments 0 to π/2, and on 7-14 iterations. Whole
calculations were done in 3 decimal digits. We
examined the average and maximum errors.

Fig. 11 The average error-limits
The scales on horizontal axis are the iteration number.
Vertical axis shows average error.

Fig. 12 Limits of maximum error.
Horizontal axis is the iteration number. Vertical axis
indicates maximum error. On 12 iterations, the average
error is low the resolution of decimal 3 digits.

Until now, we considered the processing in the

decimal 3 digits. To optimize it, hereafter we treat all in
binary. So, we can use multiply and right-shift
operations instead of multiply and divide ones. In
FPGAs, elimination of the division reduces hardware
amounts. The precision of decimal 3-digits is equivalent
to binary 10-bits. To test the binary case, we replaced
“F=1000” to “F=1024” [see section 3.4.1 concerning
(2)]. The results are listed in figure 13 and 14.

Fig. 13 Limits of average error.
Horizontal axis is the iteration number. Vertical axis
indicates average error.

Fig. 14 Limits of maximum error.
Horizontal axis is the iteration number. Vertical axis
indicates maximum error.

4. ELIMINATION OF DIVIDER:
RECIPROCAL ITERATIONS

We discuss a calculation method of 1/sin(z), z~0.

It cannot be executed by expansions. Usually,
Newton-Raphson method is used. It is iterations and
requires an initial guess. It is difficult to find
appropriate guesses. However, the function, 1/z, is not
so irregular one; therefore, we expect rapid convergence
of Newton-Raphson, and try some higher-order
expressions. They are followings.
2nd. order: Xn+1 = 2Xn –z ∗ Xn2, (22)
3rd. order:

h=1 -z ∗ Xn, Xn+1 = Xn ∗ (1 + h + h2), (23)
4th. order:

h= 1 -z ∗ Xn, Xn+1 = Xn ∗ (1 + h)(1 + h2), (24)
Where, we set initial guess X0=1 for all z-values.
When z=0.01, the error covergences of eqs. (22-24) are
plotted in figure 15.

Fig. 15 Error convergence of Newton-Raphson method.
Vertical axis is logarithm scale [100-0.001]. Horizontal
axis is the number of iterations. Digits “2-4” are second,
third, and fourth order’s expressions, respectively.
Whole initial guess is 1.

The guess is not appropriate value; therefore, rapid
convergence character of higher-order is required. We
tried the fourth order expression for many values of z.
As the results, to get error of O(-4), the maximum
number of iterations was 9. Thus, if we used the
expression, we might omit dividers in FPGA.

CONCLUSIONS

Our objective was to design a FPGA that detected
motions of bodies in real-time processing. Now, we are
at the stage that simulations of triangular functions are
completed. We examined some optimal expansions and
characters of the cordic algorithm.

The new expansions include polynomials until 3rd
order and have coefficients of power of 2. The
evaluations don’t require divisions, and the
approximation level is 7 times higher than the same
order of Maclaurin expansions.

For the cordic algorithm, we researched numerical-
representation bits and iteration-number to realize
resolution of O(-3) for function evaluations. Those were
9-10 bits in binary, and 12 iterations. We are sure that
the cordic algorithm is useful. We are now constructing
of it on a FPGA.

Then, we can calculate the locations of moving
bodies within O(-3). When they are very far from the
detectors, the high precision evaluation of “sin(z), z~0”
is required. The evaluation is equivalent to high
precision calculation of the reciprocal numbers. It
cannot be processed by expansions or the cordic
algorithm; so, we examined Newton-Raphson's method.
The higher order expressions have less dependency for
initial guesses, and moreover, it shows rapid
convergence. On 5-9 iterations, O(-7) approximation is
got. Thus, we can predict the locations in case of very
far area. Since the expressions are very useful, we have
no longer equipped dividers on FPGA, as well as
“3D-Now”.

REFERENCES

[1] Xilinx Inc. Home page: “Programmable Logic
Devices, FPGA & CPLD”,
URL: http://www.xilinx.com/

[2] J.Yamauchi, T.Uno, and S.Hitotsumatsu, “Numerical
Calculations for computers (in Japanese)”, Vol.3,
Baifu-kan Pub. Co. Ltd.(1972,Tokyo).

[3] M.Mori, “FORTRAN 77 Programming for Numerical
Calculations (in Japanese)”,
Iwanami Pub. Co. Ltd.(1986,Tokyo),
ISBN4-00-007684-1.

[4] T. Srikanthan and B. Gisuthan
“A novel technique for eliminating iterative based
computation of polarity of micro-rotations in CORDIC
based sine-cosine generators”
Volume 26, Issue 5 , 10 June 2002

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	page11: 473
	page21: 474
	page31: 475
	page41: 476
	page51: 477
	page61: 478

