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Abstract: To detect motions of bodies, we have discussed them with two viewpoints; one is a detection algorithm, 
and another is the hardware implementation. The former is to find small terms expansions for sine/cosine functions.  
We researched Maclaurin and optimum expansions, and moreover to reduce hardware amounts, revised the 
expansions. The expansions don’t include divide calculations, and the error is within 0.01%. As for the former 
problem, there is another approach also; that is the cordic method. The method is based on the rotation of a vector on 
the complex plain. It is simple iterations and don’t require large logic. We examined the precision and convergence of 
the method on C-simulations, and implemented on HDL. The later problem is to make FPGA within small gates. We 
considered approaches to eliminate a divider and to reduce the bit number of arithmetic. We researched 
Newton-Raphson’s method to get reciprocal numbers. The higher-order expression shows rapid convergence and 
doesn’t be affected by the initial guess. It is an excellent algorithm. Using them, we wish to design a detector, and are 
developing it on a FPGA. 
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1. INTRODUCTION 
 

It is meaningful that determines equation of motions 
on real time, and predicts the locations of objects in 
future. Where, we must determine the locations 
currently; it is a necessary condition. We believe that 
the limitation of software means would become 
conspicuous. We pay attention to Hardware Descriptor 
Language (HDL) and Field Programmable Gate Array 
[1] (FPGA). They are techniques that make layout of 
field-programmable LSI. Using them, we can plan and 
design small scale computing resources. However, they 
must be designed under some restrictions; i.e., the 
number of bits, elimination of complex functions, 
annihilation of division, and so on. Our objective is to 
avoid these restrictions by developing new techniques 
and to equip them on FPGA. 

LSI implementations of complex functions are 
interesting research, which causes deep understanding 
of algorithms. In this paper, we try to develop one-chip 
calculator to determine the position of an emission 
source. It is development of means to find status in a 
space; and it is also a step for non-destruction 
examinations. 
 We defined the chip’s specifications as followings. 
(1) There is a space, which includes an object. The 
object emits radiation randomly. Increasing the distance 
from a source, the radiation intensity decreases toward 
zero non-linearly. 
(2) Two detectors are set to detect the radiation. 

The detector’s locations are fixed beforehand. 
(3) On such a system, we wish to determine current 
positions of a moving object, and want to make the size 
of a calculation-unit minimize. 
(4) We wish to shorten the developing terms and costs. 
Thus, we adopted a FPGA of 20[KG]. 
 

2. DETERMINATIONS OF LOCATIONS 
 

Some determination methods for current locations of 
moving objects are known. A general procedure is based 
on the triangulate; that is, we define a triangle (figure 
1). 

 

 
Fig 1. Geometry of an object and two detectors. 
 
The problem is defined as “evaluate unknown variables 
x, y, m, and under the following conditions.” 
L=x+y,                                 (1) 
x=n∗ cos(θ ),                            (2) 
y=m∗ cos( φ ),                           (3) 
n∗ sin(θ ))=m∗ sin( φ ).                   (4) 
 



Now, we show a scheme to evaluate the variables. 
From eqs. (1-3), we get, 
n∗ cos(θ )+ m∗ cos( φ )=L.                    (5) 
So, we obtain “n” as, 
n={L- m∗ cos( φ )}/cos(θ ).                    (6) 
Then, we get, 
m={sin(θ )/sin( φ )}{L- m∗ cos( φ )}/cos(θ ),      (7) 
m[1+{sin(θ )/sin( φ )}{cos( φ )/cos(θ )}] 

={sin(θ )/ sin( φ )}{L/cos(θ )}.             (8) 
Therefore, 
m={sin(θ )/sin( φ )}{L/cos(θ )}/[1+{sin(θ )/sin( φ )} 
{cos( φ )/cos(θ )}] 
={L/cos(θ )}/[{sin(θ )/sin( φ )}-1+{cos( φ )/cos(θ )}]. 

(9) 
Considering the right side of eq. (9), the major term is 
1/cos( θ ). The term controls a distance between an 
object and two detectors. If the object is separate from 
the detectors, the argument is θ → π /2. On the limit, 
high precision calculation of 1/cos( θ ) is required. For 
the calculation, we adopt, 
1/cos(θ )=1/sin(π /2-θ ).                     (10) 
We rewriteπ /2-θ =z, and, 
1/sin(z), z → 0.                              (11) 
The term can be evaluated by Maclaurin expansion. 
Thus, for infinitesimal small z, we get, 
sin(z)=z -z3/6 +z5/120.                        (12) 
1/sin(z)=1/( z -z3/6 +z5/120)=(1/z)+R.           (13) 
The eq. (13) is so accurate; in an interval, 0<z<π /64, 
we get, 
1/sin(z)=(1/z)+z/6.                           (14) 
The precision of eq. (14) is O(-7). The eq. (14) must be 
implemented by HDL and FPGA; it is not so easy 
problem. The term 1/z cannot be expanded by 
polynomials but be expressed by iterations. The 
expression will be discussed in section 4. 

The term, cos( φ )/cos( θ ), can be rewrite by relation, 
φ =θ + ε < π /2; therefore, the term becomes 1/1 on the 
limit. Thus, there is no problem for the precision. 
The term, 1/{sin(θ )/sin( φ )}, is; 
1/{sin(θ )/sin( φ )}= sin( φ )/sin(θ )=sin(θ + ε )/sin(θ ) 
={sin(θ )cos( ε )+cos(θ )sin( ε )} /sin(θ ) 
= cos( ε )+sin( ε )/tan(θ )~ cos( ε )~1.           (15) 
Therefore, there is no problem. So, we get, 
m={L/cos(θ )}/[ {sin(θ )/sin( φ )}-1 

+{cos( φ )/cos(θ )} ]→L/{2cos( θ )},         (16) 
and we get for variable “n”, 
n=[L-{sin( θ )/sin( φ )}{L/cos( θ )}/[1+{sin( θ )/sin( φ )}
{cos( φ )/cos(θ )}] ∗ cos( φ )]/cos(θ ).            (17) 
Here, we check an influence of small bit number. 
In case of θ = φ , eq. (16) is, 
m=(1/2)cos(θ ).                             (18) 
We calculated eq. (18) in 10-bits numerical calculations, 

and got figure 2. 

 

 
Fig 2. Error curve in case of 10-bits calculations for 
eq.(18). 
The point “1” on horizontal axis is 87.19 [deg], and 
point “65” is 89.96 [deg]. The notch on horizontal axis 
is 0.04327[deg]. In the region θ <89.44 [deg], the error 
of distances between object and detector is lower than 
unit length L=1. 
 

On θ =89.44[deg], the distance is ~51; therefore, the 
calculation error is lower than (+/-)0.02, until 50 times 
far of unit length. The results are got as ability of the 
algorithm. If we used 10-bits calculations, the 
resolution is 1/210=0.00098~O(-3). The discrete error is 
20 times smaller than that of the algorithm error. 

 
3. FPGA EXPRESSIONS OF TRIANGULAR 

FUNCTION 
 

When triangular functions are implemented on FPGA, 
various algorithms are known [1]. We researched them 
on viewpoints, hardware amounts, precision, 
annihilation of divide, and so on. 
  
3.1 MaClaurin expansions 

Maclaurin expansions for triangular functions are, 
sin(x)=x-x3/6+...,                           (19) 
cos(x)=1-x2/2+x4/24-....                      (20) 
Here, we calculated them in interval 0<x<π /2. 
In eqs.(19, 20), there is no divide calculation. Constants, 
1/6 and 1/24, are executed as multiply of finite decimals. 
If we use 32-64 bits floating-point numbers, eqs. (19, 
20) are practical in interval 0<x<π /4. 

 

 
Fig. 3 Precision of sin(x)=x-x3/6. 
The point “1” on horizontal axis is 0 [deg], and point 



“65” is 90 [deg]. The notch on horizontal axis is 1.406 
[deg]. In region π /4<x, the expression has not 
practical accuracy. 
  
3.2 Optimized expansions 
Optimized expansions [2,3] replaced by power series of 
2. 
Optimized expansions are excellent algorithm; however, 
they require floating-point numbers more than 32-bits. 
They may be developed for integrated functions in 
mathematical library. The hardware is larger amount. 
We wish to reduce them without decline of the precision. 
We tried some algorithms and examined the characters 
under the following conditions. 
(1) Replace coefficients to power of 2.   
(2) The highest power of x is set to be 3. 
(3) Revise the precision of 2-terms Maclaurin expansion, 
sin(x)=x-x3/6. 
(4) Expand effective region to be over π /4. 
Finally, we get an expression; that is, 
sin(x)=x-x2/32-x3/8.                          (21) 

 

 

Fig. 4 Precision of sin(x)=x-x2/32-x3/8. 
The point “1” on horizontal axis is 0 [deg], and point 
“65” is 90 [deg]. The notch on horizontal axis is 1.406 
[deg]. 
 

In whole region, calculation error is almost lower 
than 1%. The precision is 7 times high compared with 
original Maclaurin expansion (figure 3), and moreover 
the coefficients are calculated by a shifter. We also 
found an expression, sin(x)=(1-1/512)x-x2/32-x3/8. 
This expansion gives error under 0.8% in whole region; 
however, this gives low precision nearby x=0. Therefore, 
we didn’t use it. 
 
3.3 Cosine expoansions 
Mathematically, cosine function is same characters for 
sine functions. However, on the optimized expansions, 
the both functions are not equal. We tried the precision 
of cosine function expansions. That is, we selecte an 
simple expression, cos(x)=1-x2/2, and calculate it. The 
results are shown in figure 5. 

 

 
Fig. 5 Precision of cos(x)=1-x2/2. 
The point “1” on horizontal axis is 0 [deg], and point 
“65” is 90 [deg]. The notch on horizontal axis is 1.406 
[deg]. 
 

In whole region, calculation error is lower than 0.1%. 
The expression is very simple one; however, the 
precision is 10 times high compared with sine optimized 
expansion (figure 4). The expansion has high precision 
extremely, error=0.02%, in interval x<π /4. 
We got more accurate expression, cos(x)=1-x2/2+x3/64; 
the precision is following. 

 

 
Fig. 6 Precision of cos(x)=1-x2/2+x3/64. 
The point “1” on horizontal axis is 0 [deg], and point 
“65” is 90 [deg]. The notch on horizontal axis is 1.406 
[deg]. 
 

In whole region, calculation error is lower than 0.01%. 
The precision is 100 times high compared with sine 
optimized expansion (figure 4). Moreover, the error 
near x=π /2 is low; this is an useful character. 
 
3.4 Cordic algorithm 

The cordic algorithm [4] emulates the function value 
as a vector on the complex plane. It rotates the vector by 
operating a complex number, and after the iterative 
rotations, it gives the function value as the real-part of 
the vector. The values of sine, cosine, co-tangent, 
hyperbolic-sine, hyperbolic-cosine, exponential, and 
logarithm functions can be obtained by the algorithm by 
changing of an initial value and the convergence 
conditions. The algorithm can be implemented in a 
small-scale circuit comparatively. So, scientific- 
calculators often build in it. It is a notified algorithm; so, 
we researched the realization. 
To simplify the discussions, we limit to sine and cosine 



functions. The outline of the algorithm is followings. 
It thinks about a unit vector f with the argument θ on 

a starting point. We write the real and imaginary parts as 
x and y. 
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Here, an initial guess is θ =0, x=1, and y=0. It is 
assumed that target phase angle t is given as an 
argument of the requested function. It thinks making it 
to t→= 0θ  by rotating vector f. Here, the operator 
where the angle α is rotated to the vector on the 
complex plane will be defined, and it be called 
correction vector g. This conversion can be described as 
follows by the procession form. 
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Parameter p decides the direction of conversion 
(direction of the rotation). And it is 1or-1. The absolute 
value of vector f is done by this conversion in the 

21 δ− time. 

Here, the parameter δ is provided as follows. 
L8/1,4/1,2/1,1)1(2 =−−= nδ  

We show the expression of the change in the phase angle 
as follows. 

αθθ +=+ nn 1 ))(tan( 1 δα −=  

After all, this conversion and multipling vector g that 

length is 21 δ− , and the phase angle is α  is same. 

Sign p in the direction of the phase angle degree 
correction is made a sign opposite to t−θ . This vector 
rotation is repeated until error margin )( t−θ becomes 
small enough. The absolute value of function vector f 
leaves one, and is finally as follows. 
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Then, the absolute value of an initial value of f is 
assumed to be this reciprocal, and it is assumed initial 
phase 0=θ . We get the last settling result. 
 
A trigonometric value was obtained by becoming real 
part is cos t and imaginary part is sin t of f. 
 

3.4.1 Verification of accuracy of cordic algorithm 
We verified accuracy of the cordic algorithm by using 

C program. The objects are; 
(1) dependency of iterations for accuracy, 
(2) dependency of significant digits, 
(3) number of iterations to get precision of 3-digits. 
Concerning to (1), we simulated the codic algorithm for 
sine-function. Thus, we calculated sine-function values 
from 0 to π/2, on 10-25 iterations. We examined the 
limit of error for average and maximum ones. 

 
Fig. 7 Limit of average error. 
Horizontal axis is the number of iterations. The numbers 
on vertical axis show limit of average error for various 
arguments. 

 
Fig. 8 Limit of maximum error. 
Horizontal axis is the number of iterations. The numbers 
on vertical axis show limit of maximum error for 
various arguments. 
 
Concerning to (2), we simulated sine-functions for some 
digits, that is 1 to 5 significant digits. The arguments of 
the sine-function are 0 to π/2. The number of iterations 
is 25. We examined the limit of error for average and 
maximum. We adopted the following approximation for 
the test. The approximation C-language-cords are 
following; 
a = x * F + 0.5; 
x = a; 
x = x / F; 
Where “a” is an integer variable of 4B, and “F” is a 
IEEE-real variable of 8B. We use Fs in interval 
[1,10000], by decreasing of calculation-precision, 



simulate the movements. 

 
Fig. 9 Limit of average error. 
Horizontal axis is plotted by significant digits in the 
decimal. The numbers on vertical axis show limit of 
average error for various arguments of sine-function. 

 
Fig. 10 Limit of maximum error. 
Horizontal axis is plotted by significant digits in 
decimal. The numbers on vertical axis show limit of 
maximum error for various arguments of sine-function. 
 
Concerning to (3), we simulated the cordic algorithm 
for sine-function. The simulations were executed from 
arguments 0 to π/2, and on 7-14 iterations. Whole 
calculations were done in 3 decimal digits. We 
examined the average and maximum errors. 

 
Fig. 11 The average error-limits 
The scales on horizontal axis are the iteration number. 
Vertical axis shows average error. 

 
Fig. 12 Limits of maximum error. 
Horizontal axis is the iteration number. Vertical axis 
indicates maximum error. On 12 iterations, the average 
error is low the resolution of decimal 3 digits. 

 
Until now, we considered the processing in the 

decimal 3 digits. To optimize it, hereafter we treat all in 
binary. So, we can use multiply and right-shift 
operations instead of multiply and divide ones. In 
FPGAs, elimination of the division reduces hardware 
amounts. The precision of decimal 3-digits is equivalent 
to binary 10-bits. To test the binary case, we replaced 
“F=1000” to “F=1024” [see section 3.4.1 concerning 
(2)]. The results are listed in figure 13 and 14.  

 
Fig. 13 Limits of average error. 
Horizontal axis is the iteration number. Vertical axis 
indicates average error. 

 

Fig. 14 Limits of maximum error. 
Horizontal axis is the iteration number. Vertical axis 
indicates maximum error. 
 
 



4. ELIMINATION OF DIVIDER: 
RECIPROCAL ITERATIONS 

 
We discuss a calculation method of 1/sin(z), z~0. 

It cannot be executed by expansions. Usually, 
Newton-Raphson method is used. It is iterations and 
requires an initial guess. It is difficult to find 
appropriate guesses. However, the function, 1/z, is not 
so irregular one; therefore, we expect rapid convergence 
of Newton-Raphson, and try some higher-order 
expressions. They are followings. 
2nd. order: Xn+1 = 2Xn –z ∗ Xn2,             (22) 
3rd. order: 

h=1 -z ∗ Xn, Xn+1 = Xn ∗ (1 + h + h2),       (23) 
4th. order: 

h= 1 -z ∗ Xn, Xn+1 = Xn ∗ (1 + h)(1 + h2),    (24) 
Where, we set initial guess X0=1 for all z-values. 
When z=0.01, the error covergences of eqs. (22-24) are 
plotted in figure 15. 

 
Fig. 15 Error convergence of Newton-Raphson method. 
Vertical axis is logarithm scale [100-0.001]. Horizontal 
axis is the number of iterations. Digits “2-4” are second, 
third, and fourth order’s expressions, respectively. 
Whole initial guess is 1. 
 

The guess is not appropriate value; therefore, rapid 
convergence character of higher-order is required. We 
tried the fourth order expression for many values of z. 
As the results, to get error of O(-4), the maximum 
number of iterations was 9. Thus, if we used the 
expression, we might omit dividers in FPGA. 
 

CONCLUSIONS 
 

Our objective was to design a FPGA that detected 
motions of bodies in real-time processing. Now, we are 
at the stage that simulations of triangular functions are 
completed. We examined some optimal expansions and 
characters of the cordic algorithm. 

The new expansions include polynomials until 3rd 
order and have coefficients of power of 2. The 
evaluations don’t require divisions, and the 
approximation level is 7 times higher than the same 
order of Maclaurin expansions. 

For the cordic algorithm, we researched numerical- 
representation bits and iteration-number to realize 
resolution of O(-3) for function evaluations. Those were 
9-10 bits in binary, and 12 iterations. We are sure that 
the cordic algorithm is useful. We are now constructing 
of it on a FPGA. 

Then, we can calculate the locations of moving 
bodies within O(-3). When they are very far from the 
detectors, the high precision evaluation of “sin(z), z~0” 
is required. The evaluation is equivalent to high 
precision calculation of the reciprocal numbers. It 
cannot be processed by expansions or the cordic 
algorithm; so, we examined Newton-Raphson's method. 
The higher order expressions have less dependency for 
initial guesses, and moreover, it shows rapid 
convergence. On 5-9 iterations, O(-7) approximation is 
got. Thus, we can predict the locations in case of very 
far area. Since the expressions are very useful, we have 
no longer equipped dividers on FPGA, as well as 
“3D-Now”. 
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