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1. INTRODUCTION

　 It is important to consider the implementation of
a fixed-point finite word length (FWL) compensator in-
stead of float-point of a compensator when we want a
reasonable-price compensator, or an integrated-circuit
compensator. Concerning quantization error, namely
round-off errors and coefficient errors, there is a great
deal of research for digital filters for example [4]. As
for control systems, many researchers have given opti-
mal structures of the compensator as in [2]. However,
as in the previous paper, they should assume the noise
is white. D. Williamson[1] solved this case against col-
ored noise in the LQG controller. Recently, one of the
authors derived an optimal filter against colored noise[3].
And consequently, we applied the result to a two-degree-
of-freedom control system in this paper. In addition the
perturbation of the coefficients is considered. Further-
more, simulation results indicate this method gives better
than other structures.

2. STATE-SPACE
REPRESENTATION OF THE
DIGITAL CONTROL SYSTEM

　 Let state-space representations of infinite-word-
length (IWL) compensators C1 and C2 be

C1

{
xc1[k + 1] = Ac1xc1[k] + bc1r[k]
yc1[k] = cc1xc1[k] + dc1r[k]

(1)

C2

{
xc2[k + 1] = Ac2xc2[k] + bc2uc[k]
yc2[k] = cc2xc2[k] + dc2uc[k]

(2)

where xc1[k] ∈ Rn1，yc1[k] ∈ R，Ac1 ∈ Rn1×n1， bc1 ∈
Rn1×1，cc1 ∈ R1×n1，dc1 ∈ R1×1，xc2[k] ∈ Rn2，yc2[k] ∈
R，Ac2 ∈ Rn2×n2， bc2 ∈ Rn2×1, cc2 ∈ R1×n2，and
dc2 ∈ R1×1. Also, let the state-space representation of
the plant be

P

{
xp[k + 1] = Apxp[k] + bpup[k]
yp[k] = cpxc[k]

(3)

where xp[k] ∈ Rm, yp[k] ∈ R，Ap ∈ Rm×m，bp ∈ Rm×1，
and cp ∈ R1×m.
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Fig. 1: Finite-Word-Length Control System

　 By using these representations, we have xs =
[xT

p [k]xT
c1[k]xT

c2[k]]T，ys[k] = yp[k] and, further, we have
the following augmented state equation, consisting of
infinite-word-length (IWL) digital compensators and the
plant:

S

 xs[k + 1] = Asxs[k] + bs

[
r[k]
w[k]

]
ys[k] = csxs[k]

(4)

where

As =

[
Ap − dc2bpcp bpcc1 −bpcc2

0 Ac1 0
bc2cp 0 Ac2

]
,

bs =

[
dc1bp −dc2bp

bc1 0
0 bc2

]
, cs =

[
cp 0 0

]
Next, consider the FWL digital compensator. Let the
digital compensators be C̃1 and C̃2, then, we have the



following:

C̃1


x̃c1[k + 1] = (Ac1 + ∆Ac[k]) x̃c1[k]

+ (bc1 + ∆bc[k]) r[k] +�[k]
ỹc1[k] = (cc1 + ∆cc[k]) x̃c1[k]

+ (dc1 + ∆dc[k]) r[k] + β[k]

(5)

C̃2


x̃c2[k + 1] = (Ac2 + ∆Ac[k]) x̃c2[k]

+ (bc2 + ∆bc[k]) ũc[k] + �[k]
ỹc2[k] = (cc1 + ∆cc[k]) x̃c2[k]

+ (dc2 + ∆dc[k]) ũc[k] + η[k]

(6)

where �[k]，β[k]，�[k]，and ε[k] are additive errors
caused by round-off errors, multiplication and overflow
of addition. (∆Ac[k]，∆bc[k]，∆cc[k]，∆dc[k])，
(∆Ac[k]，∆bc[k]，∆cc[k]，∆dc[k]) are slightly
changed in random, which are due to the coefficient
quantization errors, are no relation each other, assume
white noises, and are no relation with w[k]. And assume
its average is 0 and its variance is ρ2 (0 < ρ � 1). Here,

x̃s =
[
x̃T

p [k]x̃T
c1[k]x̃T

c2[k]
]T

and ỹs[k] = ỹp[k] hold, we
have the following augmented control system state
equations consisting of the FWL digital controller and
the plant:

S̃


x̃s[k + 1] = (As + ∆As[k]) x̃s[k]

+ (bs + ∆bs[k])
[

r[k] w[k]
]T

+
[
bT

p β[k]− bT
p η[k] �T [k] �T [k]

]
ỹs[k] = csx̃s[k]

(7)

∆As[k] =

[ −∆dcbpcp bp∆cc −bp∆cc

0 ∆Ac 0
∆bccp 0 ∆Ac

]
,

∆bs[k] =

[
∆dcbp −∆dcbp

∆bc 0
0 ∆bc

]

3. ANALYSIS OF QUANTIZATION
ERROR

The combination of (4) and (7) gives output error
∆ys[k] = ỹs[k] − ys[k]

exs[k + 1] = x̃s[k + 1] − xs[k + 1]

= Asexs[k] + ∆As[k]xs[k] + ∆As[k]exs[k]

+ ∆bs

[
r̃[k]
w[k]

]
+

[
bpβ[k] − bpη[k]

�[k]
�[k]

]
(8)

∆ys[k] = csẽxs[k] (9)

In (8), since ∆As[k]exs[k] is smaller than other terms,
we omit it from now on. Solving ∆ys[k] in (8), (9) gives
two terms due to the source of the errors:

∆ys[k] = ∆yr [k] + ∆yk[k] (10)

∆yr[k] = cs

k−1∑
i=0

A
k−i−1
s

[
bpβ[i]− bpη[i]

�[i]
�[i]

]
(11)

∆yk[k] = cs

k−1∑
i=0

A
k−i−1
s

(
∆As[i]xs[i]

+∆bs[i]

[
r[i]
w[i]

])
(12)

3.1 Analysis of the round-off errors

　Assume the input signal u[k] varies a lot in comparison
with the quantization level. Then �[k]，β[k]，�[k]，and
η[k] become random noises and ∆yr[k] is called round-
off error. Consequently, when such an input signal is fil-
tered, the sources of round-off error of (As，bs，cs，d)，
and each element of �[k]，β[k]，�[k]，and η[k] can be as-
sumed distributed like white noises which varies within
[−2−l/2, 2−l/2] and are independent of each other. Thus,
when σ2 = 2−l/12, the following equation can be de-
noted:

E

[(
�[i]
β[i]

)(
�[j]
β[j]

)T]
= σ2δ(i − j)

[
Q 0
0 q

]
(13)

E

[(
�[i]
η[i]

) (
�[j]
η[j]

)T]
= σ2δ(i − j)

[
Z 0
0 z

]
(14)

where Q，Z are diagonal matrix whose ith diagonal el-
ements are given by the number of noninteger of the ith
row of the matrix Ac1，bc1 and Ac2，bc2, respectively.
Furthermore, q and z are the number of the noninteger
in cc1，dc1 and cc2，We solve the variance E [∆y

r [k]] of
∆yr[k] as

E
[
∆y

r [k]
]

=

k−∑
i=

k−∑
j=

csA
k−i−
s

×E


 bpb

T
p β[i]β[j] 0 0

+bpb
T
p η[i]η[j]
0 �[i]�[j] 0
0 0 �[i]�[j]




× (Ak−j−i
s

)T
c

T
s (15)

The equations (13) and (14) gives the variance of the
steady-state round-off error ∆y

r [k] as follows:

E
[
∆y

r

]
= σ

∞∑
i=0

csA
i
s

×
[
bpb

T
p q + bpb

T
p z 0 0

0 Q 0
0 0 Z

] (
A

i
s

)T
c

T
s (16)

Since (16) is scalar and its trace is the same,

E
[
∆y

r

]
= σtr

[[
bpb

T
p q + bpb

T
p z 0 0

0 Q 0
0 0 Z

]
W

]
(17)

where W =

∞∑
i=0

(
A

i
s

)T
c

T
s csA

i
s W is called the noise ma-

trix, which can be obtained as a solution of the following
Lyapunov equation:

W = A
T
s WAs + c

T
s cs (18)

In (17), σ2 is obtained by the word length l , which does
not change even if the structure of the compensator is
changed. Thus dividing (17) by σ2 gives

Gs = tr

[ [
bpb

T
p q + bpb

T
p z 0 0

0 Q 0
0 0 Z

]
W

]
(19)

where Gs is called the noise power gain.



3.2 Analysis of the coefficient quantization error

　 In (8) assume �[k] = 0，β[k] = 0，�[k] = 0，η[k] = 0
and we analyze the output error due to quantization of
coefficiency. Let V exs[k] = E

[
exs[k]eT

xs

]
and

E
[
∆y

k [k]
]

= E
[
{csexs[k]} {csexs[k]}T

]
= csV exs[k]cT

s (20)

The equation (8) gives，

V exs[k + 1] = E
[
exs[k + 1]eT

xs[k + 1]
]

= AsE
[
exs[k]eT

xs[k]
]
A

T
s

+E
[
∆Asexs[k]eT

xs[k]∆AT
s

]
+E
[
∆bs∆b

T
s w[k]

]
+E
[
∆bs∆b

T
s r[k]
]

= AsV exs[k]AT
s + L (21)

Here, assume r[k] = 0 then E
[
∆bs∆b

T
s r[k]
]

= 0 and

L = E
[
∆Asexs[k]eT

xs[k]∆AT
s

]
+E
[
∆bs∆b

T
s w[k]

]
= σ2

[
L11 0 0
0 L22 0
0 0 L33

]
(22)

where

L11 = γ (dc2) bpb
T
p cpK̃pc

T
p + bpb

T
p

n∑
i=1

γ (cc1i) K̃c1ii

+bpb
T
p

n∑
i=1

γ (cc2i) K̃c2ii + σ2
wγ (dc1) bpb

T
p

+σ2
wγ (dc2) bpb

T
p (23)

L22 = diag

(
n∑

i=1

γ (Ac11i) K̃c1ii, · · · ,

n∑
i=1

γ (Ac1ni) K̃c1ii

)
+σ2

wdiag
(

γ (bc11) , · · · , (bc1n)
)

(24)

L33 = diag

(
γ (bc21) cpK̃pc

T
p +

n∑
i=1

γ (Ac21i) K̃c2ii,

· · · , γ (bc2n) cpK̃pc
T
p +

n∑
i=1

γ (Ac2ni) K̃c2ii

)
+σ2

wdiag
(

γ (bc21) , · · · , (bc2n)
)

(25)

γ (∗) in (23)，(24), and (25) is a function representing
the source of the error and it is given by

γ (∗) =

{
0 ∗ = Integer
1 ∗ �= Integer

(26)

where K̃p is the covariance matrix of the state of the
plant xp[k] against colored noise. K̃c1 and K̃c2 are the
covariance matrix of the digital compensators C̃1 and C̃2

is K̃c1 = E
[
xc1[k]xT

c1[k]
]

and K̃c2 = E
[
xc2[k]xT

c2[k]
]
,

respectively. K̃c1ii and K̃c2ii are i th diagonal element
of K̃c1 and K̃c2. Furthermore, σ2

w is the variance of the
output of the coloring filter w[k].
If As is stable, the covariance matrix V exs[k] converges.
Thus, when the value of the steady state is V exs，it can
be obtained by solving the following Lyapunov equation:

V exs = AsV exsA
T
s + σ2

L (27)

Thus, E [∆y
k]can be obtained by

E [∆y
k] = csV exsc

T
s

= σ2tr

[
L

∞∑
i=0

(
A

i
s

)T
c

T
s csA

i
s

]
= σ2tr [LW ] (28)

where W = AT
s WAs +cT

s cs is the noise matrix (observ-
ablity Grammian) . Since σ2 is determined by the word
length 	, it does not change even if the structure of the
digital compensator is changed. Thus divide（28）by σ2,
we call it the stastistical coefficient sensitivity

Sk = tr [LW ] (29)

4. THE PROPOSAL OF OPTIMAL
　 STRUCTURE

4.1 The state transformation of the control sys-
tem
In this section we propose the structure of the control

system. Note that we equivalently transform only the
compensators. We define the state transformation ma-
trix as

T =

[
I 0 0
0 T c1 0
0 0 T c2

]
(30)

where I ∈ Rm×m，T c1 ∈ Rn1×n1 , and T c2 ∈ Rn2×n2

4.2 Valuation of noise power gain and coefficient
sensitivity

　 First, we obtain the noise power gain G′
s of the equiv-

alently transformed control system. Since we can have
noise power matrix W � is W � = T TWT easily,

G′
s = tr

[ [
bpb

T
p q′ + bpb

T
p z′ 0 0

0 0 0
0 0 0

]
T TWT

]

+tr

[ [
0 0 0
0 Q� 0
0 0 Z�

]
T TWT

]
(31)

where Q�，q′，Z�，and z′ are the matrix representing the
number of the sources of round off. Since the equation
(31) reveals that the noise power gain G′

s contains a state
transformation matrix, the round off errors depend on the
compensators.
　 Note the first term of the right hand of (31). To show



it doesn’t change after the state transformation T , we
partition W as

W =

[
W 11 W 12 W 13

W 21 W 22 W 23

W 31 W 32 W 33

]
(32)

where W 11 ∈ Rm×m，W 12 ∈ Rm×n1，W 13 ∈ Rm×n2，
W 21 ∈ Rn1×m，W 22 ∈ Rn1×n1，W 23 ∈ Rn1×n2，
W 31 ∈ Rn2×m，W 32 ∈ Rn2×n1，and W 33 ∈ Rn2×n2 ,
respectively.
　Rewrite the first term of the right hand of (31) by these
partitionized noise matrix W . Since we calculate the
trace, state transformation matrixT c1 is not contained in
the term. Therefore, the state transformation doesn’t af-
fect the noise power gain G′

s and we note only the second
term. Thus, instead of minimization of G′

s, minimize

G′
ss = tr

[
Q�T

T
c1W 22T c1

]
(33)

Second, we evaluate the coefficient sensitivity:

S′
k =

[
L11 0 0
0 0 0
0 0 0

]
T

T
WT

+

[
0 0 0
0 L22 0
0 0 L33

]
T

T
WT (34)

In this case, also, the first term of the right hand of (34)
doesn’t change owing to the state transformation matrix
T . Thus, we note the second term in the case of deriva-
tion of optimal structure instead of minimization of S′

k.
Consider to minimize

S′
kss = tr

[
L�22T

T
c1W 22T c1

]
(35)

4.3 Scaling

　 Third, we consider scaling to prevent overflow. As-
sume the FWL state variable xs[k] is within [−1, +1].The
variance E

[
x2

si

]
of the state variable xsi (i = 1, 2 · · · , n)

of As, bs，cs、ds) is given by the diagonal elements of
the covariance matrix E

[
xs[k]xT

s [k]
]
. The state variable

that can be denoted is given by

xs[k] =

k−1∑
i=0

A
k−i−1
s bsw[k] (36)

The variance E
[
xs[k]xT

s [k]
]

of xs[k] is given as

E
[
xs[k]xT

s [k]
]

=

k−1∑
i=0

k−1∑
j=0

A
k−i−1
s bsE

[
0 0
0 w[i]w[j]

]
×bT

s

(
A

k−j−1
s

)T
(37)

Here, combine as the differences between i and j are con-
stants，Kρ, which is ρ = i − j > 0, is denoted

Kρ[k] =

k−1∑
i=ρ

A
k−j−1
s bsE

[
0 0
0 w[i]w[i− ρ]

]
×bT

s

(
A

k−i−1
s

)T
(Aρ

s)T (38)

In case of steady state, i.e. k → ∞

lim
k→∞

k−1∑
i=ρ

A
k−i−1 =

∞∑
i=0

A
i (39)

holds, (38) in steady state can be expressed as

lim
k→∞

Kρ =

∞∑
i=0

A
i
sbsE

[
0 0
0 w[i]w[i− ρ]

]
b

T
s

(
A

i
s

)T (
A

ρ
s

)T

(40)

Assume the eigen values of AH differ for each other and
let diagonalizing matrix of AH be V and the correspond-
ing eigen values be，m1, · · · , mnH , then

E
[
w[k]w[k − ρ]

]
= cHA

ρ
HKHc

T
H + cHA

ρ−1
H bHdH

=

nH∑
i=1

mρ
i Zi (41)

where Zi is the ith diagonal element of Z =
V −1
(
KHc

T
H +A−1

H bHdH

)
cHV . Then substitution

(41) into (40) gives

lim
k→∞

Kρ =

 0 0

0

nH∑
i=1

mρ
i Zi

Ks (Aρ
si)

T (42)

Asi is given by miAs and Ks is given by
∞∑

i=0

A
i
sbsb

T
s

(
A

i
s

)T
, which is the variance of the state

variable of the control system against white noise. Since
the terms which satisfy ρ < 0 are symmetric matrix of
Kρ (ρ > 0),

Kρ =

 0 0

0

nH∑
i=1

mρ
i Zi

 (Aρ
si)

T
Ks (43)

holds. On the other hand, the term K0, i.e. when ρ = 0,
can be obtained in steady state as follows:

K0 =

∞∑
i=0

A
i
sbsE

[
0 0
0 w[i]w[i]

]
b

T
s

(
A

i
s

)T
(44)

where

E
[
w2[k]
]

= σ2
w = cHKHc

T
H + dHdH (45)

K0 = σ2
wKs (46)

Here, σ2
w is the variance of the colored noise. Thus, the

variance of the state variable of the control system is
given by

K̃s = E
[
xs[k]xT

s [k]
]

=

nH∑
i=1

ZiKs (A∞
si ) + · · · +

nH∑
i=1

ZiKsA
T
si

+

nH∑
i=1

ZiAsiKs + · · · +
nH∑
i=1

ZiA
∞
siKs + σ2

wKs

=

nH∑
i=1

Zi

{
KsA

T
si

(
I −A

T
si

)−1

+ (I −Asi)
−1
AsiKs

}
+ σ2

wKs (47)



Next, the variance of the state variable E
[
x′2

si

]
after state

transformation is given by

K̃�

s = T
−1
K̃sT

−T (48)

4.4 The optimal structure

　Compare (33) and (35) then G′
ss has the same form as

S′
kss ifQ� and L�22 are neglected. Actually, Q�represents

the number of round- off errors, on the other hand，L�22
represents the number of coefficient errors. Such nonin-
teger coefficient causes round off errors, and on the other
hand, the noninteger coefficients are affected by quantiza-
tion. Thus, the numbers of the sources of round-off errors
and the sources of coefficient errors are the same. Conse-
quently, it is reasonable that we consider either round-off
errors or coefficient quantization errors.
　 The optimal structure problem is formulated as fol-
lows:
“Solve the state transformation matrix T c1 which mini-
mizes

G̃′
ss = tr

[
Q

′
T

T
c1W̃ 22T c1

]
(49)

such that

T
�1
c1 K̃cT

�T

c1 =

 1 ∗
. . .

∗ 1

 ” (50)

Except some special cases, Q�

ii = n + 1, q′ = n +
1,Z�

ii = n+ 1� z� = n+ 1 hold, so we can change the
problems as follows:
“Minimize

G̃0 = tr
[
T

T
c1W̃ 22T c1

]
(51)

such that

T
�1
c1 K̃cTc1

−T =

 1 ∗
. . .

∗ 1

 ” (52)

　 First, let state transformation matrix be T c1 =
T 0T 1 where T 0 satisfies

K0 = T
−1
0 K̃c

(
T

−1
0

)T
= I (53)

T 0 converts W 22 as

W 0 = T
T
0W 22T 0 (54)

Let T 1 be an arbitrary real invertible matrix and, by
using an orthogonal matrix R0 and positive matrix S,
be

T 1 = R0S (55)

Since S is positive, it can be analyzed by an orthogonal
matrix R and a diagonal matrix Λ then letting R1 =
RR0 gives

T 1 = R1ΛR
T
0 (56)

Further, substituting (53) and (56) into G′
ss = tr[T c1T c1]

gives

R0Λ
−2
R

T
0 =

 1 ∗
. . .

∗ 1

 (57)

G′
0 =

n∑
i=1

λ̃2
i γ̃2

i (58)

λ̃2
i and γ̃2

i are the ith diagonal elements of Λ2 and
RT

1W 0R1,respectively. The trace and determinant of
this equation and this inequality leads to

n∑
i=1

1

λ̃2
i

= n,

n∏
i=1

λ̃2
i ≥ n (59)

By using this equation and this inequality, solving mini-
mization of G̃0 can be changed as follows:
“obtain T c which minimizes

“G̃0 =

n∑
i=1

λ̃2
i γ̃

2
i (60)

such that

n∑
i=1

1

λ̃2
i

= n (61)

Solving this problem by using Ragrange’s method gives
when

λ̃i =

(
n∑

j=1

γ̃j/nγ̃i

)1/2

and minimized value is(
n∑

i=1

γ̃i

)2

/n

　Next, we consider the minimum value G̃0 with respect
to γ̃. In order to do this, consider an orthogonal matrix S
diogonalizing RT

1W 0R1. Since RT
1W 0R1is a symmetric

matrix, there exist inevitably orthogonal matrixS. Let
the eigen values of W 0 be θ̃2

1, · · · , θ̃2
n. Calculating the

trace and determinant of RT
1W 0R1gives

n∑
i=1

γ̃2
i =

n∑
i=1

θ̃2
i = tr (W 0) = constant (62)

n∏
i=1

γ̃2
i ≥

n∏
i=1

θ̃2
i = det (W 0) = constant (63)

This equation lead to

n∑
i=1

γ̃i ≥
n∑

i=1

θ̃i (64)

Thus, when γ̃i = θ̃i，

G̃0 =

(
n∑

i=1

θ̃i

)2

/n (65)

holds and G̃0 is minimized. So, the noise power gain of
the optimal structure by using the state transformation
matrix T c1 is given by

G̃ss = (n + 1)

(
n∑

i=1

θ̃i

)2

n
(66)

where θ̃i is the root of the eigenvalue of K̃cW 22 which is
called the second mode of the compensators, and it does



not depend on the structure of the compensators, and it is
determined by the transfer function of the compensators.

This fact is clarified by K̃�

cW
�

22 = T−1
c1 K̃cW 22T c1.

The state transformation matrix T c1 can expressed by

T c1 = T 0R1ΛR
T
0 (67)

where

T 0 :
(
K̃c

)1/2

R1 : the orthogonal matrix which consists of

the eigen vector of W 0

Λ : whose ith diagonal element is given by

λ̃i

(
n∑

j=1

θ̃j/nθ̃i

)1/2

(68)

R0 : given by n − 1 rotation matrix

and one of them is given byRi

R0 = RnRn−1 · · ·R2 (69)

Ri =


I 0 0 0 0
0 Rjj 0 Rjk 0
0 0 I 0 0
0 Rkj 0 Rkk 0
0 0 0 0 I

 (70)

Rjj = Rkk =

(
µ2

j − 1

µ2
j − µ2

k

)1/2

, Rjk = −Rkj =

(
1− µ2

k

µ2
j − µ2

k

)1/2

µ2
j and µ2

k are jth and kth diagonal elements
Ri−1 · · ·R2Λ

−2RT
2 · · ·RT

i−1, respectively where µj > 1,
µk < 1.

5. SIMULATION RESULT

　 In this section, the four structures is verified, i.e. the
directII structure, the pararell structure, the balanced re-
alization structure, and the proposed optimal structure，
C̃2 is chosen by using H∞ techniques，C̃1 is chosen by
model-matching scheme.
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Fig. 2: Round-Off Errors
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Fig. 3: Coefficient Quantization Errors

The direct II structure :

the ideal value － the dotted line

simulated value －＋

The parallel structure :

the ideal value － the dash-and-dotted-line

simulated value －ｏ

the balanced realization structure :

ideal value － the solid line, simulated value －＊

optimal structure :

ideal value － the broken line, simulated value －ｘ

6. CONCLUSION

　 In this paper, we dealt with the fixed-point two-degree-
of-freedom control system and proposed the optimal structure
which minimizes round-off error and coeffiecient-quantization
error.
Simulation results indicate that the ideal value and simulated
value are roughly identical and the proposed method is opti-
mal within 4 structures.
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