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On the stabilization of singular bilinear systems
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Abstract: In this paper, the stability problem for singular bilinear system is investigated. We present state feedback control

laws for two classes of singular bilinear plants. Asymptotic stability of the closed-loop systems is derived by employing singular

Lyapunov’s direct method. The primary advantage of our approach lies in its simplicity. In order to verify effectiveness of the

results, two numerical examples are given.
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1. Introduction
In the past decades, the stability problem of bilinear systems

has been a topic of recurring interest. the bilinear systems

may be modeled in engineering, biology, ecology, socioeco-

nomic, nuclear, thermal and chemical process [1]. There are

many results on the stability of bilinear systems, for exam-

ple, [1] investigates the robust stability problems of a class

of singularly perturbed discrete bilinear systems; [2] exhibits

a bang-bang structure using a linear switching function to

design stable feedback control of bilinear systems; [3] gives

necessary and sufficient conditions for the asymptotic sta-

bilization by using homogenous feedbacks; [4] presented a

solution to the global stabilization problem via smooth state

feedback by using KYP lemma. It should be pointed out that

these results were concerned with regular bilinear systems.

It is known that singular systems better describe physical

systems than regular ones [5]. So far, there has been much

literature to extend successfully the results on the stability

of, robust stability of regular systems to singular systems

[6],[7],[8],[9]. Up until now, however, there was little liter-

ature concerning the stability problem of singular bilinear

systems. The purpose of this paper is to design a state feed-

back controller for singular bilinear systems such that the

resulting closed -loop systems is asymptotically stable.

Notation: For real symmetric matrices X and Y , the no-

tation X ≥ Y ( X > Y ) means that the matrix X − Y

is positive-semidefinite (positive-define). ρ(W ) denotes the

spectral radius of the matrix M . ‖x‖, ‖A‖ denote the Eu-

clidean norm of the vector ‖x‖ and the matrix ‖A‖, respec-

tively, Ir denotes the identity matrix with dimension r × r.

2. Main results
Consider the following singular bilinear systems

Eẋ = Ax + Bu + N(x)u (1)

where x ∈ Rn is the state, u ∈ Rm is the control input ,

A, B are constant matrices with the appropriate dimensions

. The function N(x) : Rn → Rn×m is a smooth mapping and

defined by N(x) = [N1x, N2x, . . . , Nmx], Ni ∈ Rn×n, i =

1, 2, · · · , m . Also define B = [b1, b2, · · · , bm] .

the system (1) can be written in the following form

Eẋ = Ax +
m∑

i=1

(bi + Nix)ui (2)

We assume that unforced dynamic system (2) as follows:

Eẋ = Ax (3)

is regular,impulse-free and stable, so that there exist two

positive definite matrixes V andW such that

ET V A + AT V E ≤ −ET WE (4)

Now consider the Lyapunov function candidate

v(Ex) = (Ex)T V (Ex) (5)

The derivative of v along the trajectories of the bilinear sys-

tems (2) is given by

v̇(Ex) = xT (AT V E + ET V A)x + 2
m∑

i=1

ui(bi + Nix)T V Ex

By using (4), we have that

v̇(Ex) ≤ −(Ex)T W (Ex) + 2
m∑

i=1

ui(bi + Nix)T V Ex

In order that v̇(Ex) is negative, we choose the controller as

follows:

ui = −αi(bi + Nix)T V Ex (6)

Lemma 1. For any matrices X, Y , and scalar k, the follow-

ing inequalities hold:

(i) ‖X + Y ‖ ≥ ‖X‖ − ‖Y ‖
(ii) ‖kX‖ = |k|‖X‖

Theorem 1. Suppose the systems (3) is regular ,impulse-

free and stable, if there exists constant γ > 0 such that

max1≤i≤m{‖Nix‖} ≤ γ‖Ex‖ (7)

then the controller (6) can stabilize the systems (2)

Proof: The closed-loop system with the controller (6) can be

described as

Eẋ = Ax − αΣm
i=1(bi + Nix)(bi + Nix)T V Ex (8)



From above analysis, we have that limt→∞ Ex = 0 for the

solution of the closed-loop systems (8). We will show that

limt→∞ x = 0 for the solution of the closed-loop systems(8).

For the systems (3) is regular and free-impulse , there exist

two invertible matrixes P and Q such that

PEQ =

(
Ar 0

0 In−r

)

Letting H(x) = (hT
1 (x), hT

2 (x))T = −PαiΣ
m
i=1(bi+Nix)(bi+

Nix)T V Ex .If the condition of the Theorem1 holds, then

limt→∞ H(x) = 0. On the other hand, by taking the trans-

form x(t) = Qz(t) = Q(zT
1 zT

2 ), we have that the closed-loop

(6) is equivalent to

ż1 = Arz1 + h1(Qz) (9)

0 = z2 + h2(Qz) (10)

Due to limt→∞ H(x) = 0, it is easy to be obtained that

limt→∞ h2(x) = 0. From (10), we have that limt→∞ z2(t) =

0. Besides, from limt→∞ Ex = 0, we obtained that

limt→∞ z1 = 0. Hence, limt→∞ x = 0. We notice if

bi = 0, i = 1, 2, · · ·m , then system (2) becomes a strictly

bilinear control system, described as

Eẋ = Ax +
m∑

i=1

Nixui (11)

�

Corollary 1. . Suppose the systems (3) is regular ,impulse-

free and stable, if there exists constant γ > 0 such that

max1≤i≤m{‖Nix‖} ≤ γ‖Ex‖ (12)

then the controller ui = −αi(Nix)T V Ex i = 1, 2, · · · , m can

stabilize the systems (11).

It should be pointed out for system (10) the condition (11)

is more conservative. To find the new feedback control pol-

icy that stabilizes the system (11), let us still consider the

Lyapunov function candidate (5) The derivative of v along

the trajectories of the bilinear systems (10) is given by

v̇(Ex) = xT (AT V E + ET V A)x

+2
∑m

i=1 ui(Nix)T V Ex

≤ −(Ex)T W (Ex) + 2
∑m

i=1 ui(Nix)T V Ex

In order to ensure that v̇(Ex) ≤ 0, we can choose the follow-

ing controller

ui = −αisign[(Nix)T V Ex], i = 1, 2, · · · , m (13)

where

sign(x) =




1 , x > 0

0 , x = 0

−1 , x < 0

and αi > 0, i = 1, 2, · · · , m

are constant. Letting LE = {L ∈ R(n−r)×n : ET L =

0, rank[L] + rank[E] = n}

Theorem 2. Suppose the systems (3) is regular, impulse-

free and stable, if there exist constant αi, matrixes Xi > 0

and matrixes Ei ∈ L, Yi such that

Σm
i=1αi < m (14)

AT (V E + EiYi) + (V E + EiYi)
T A

+m2NT
i (V E + EiYi)X

−1
i (V E + EiYi)

T Ni + Xi < 0

(15)

Then the controller(13) can stabilize the strictly bilinear sin-

gular systems (11).

Proof: The closed-loop system (11) and(13) is described as

Eẋ = Ax − Σm
i=1αisign[(Nix)T V Ex]Nix (16)

From the above analyst, we have that limt→∞ Ex = 0 for

the solution of the closed-loop systems (16). We will show

limt→∞ x = 0 Let

Mi = mNi, N̄i := PNiQ =

(
Ni11 Ni12

Ni21 Ni22

)
,

M̄i := PMiQ =

(
Mi11 Mi12

Mi21 Mi22

)
,

Gi := V E + EiYi

(17)

It is easy to see that (15) can be rewritten the following form:

AT Gi + GT
i A + MT

i GiX
−1
i GT

i Mi + Xi < 0

By the similar procedure as the proof of Theorem1 in [9], we

have that ρ(Mi22) < 1. Hence

ρ(Ni22) <
1

m
(18)

Let x(t) = Qz(t) = Q(zT
1 zT

2 ). From limt→∞ Ex = 0, we

obtain limt→∞ z1 = 0. We notice that the closed-loop (16)

is equivalent to

ż1 = Arz1 + Σm
i=1uiNi11z1 + Σm

i=1uiNi12z2 (19)

0 = z2 + Σm
i=1uiNi12z1 + Σm

i=1uiNi22z2 (20)

From equation(19), we obtain that

lim
t→∞

(z2 + Σm
i=1uiNi22z2) = 0 (21)

On the other hand, From (21) and Lemma1, the following

inequality holds

‖z2 + Σm
i=1uiNi22z2‖

≥ ‖z2‖ − Σm
i=1αi‖Ni22‖‖z2‖

≥ |z2‖ − Σm
i=1

αi
m
‖z2‖

= (1 − Σm
i=1

αi
m

)‖z2‖
(22)

According to (14), (20) and (21), we have that limt→∞ z2 =

0. Hence, limt→∞ x = 0 �



3. Numerical Examples
Example1: Consider the singular bilinear systems as follows

Eẋ = Ax + Σ3
i=1(bi + Nix)ui (23)

where

E =


 1 0 0

0 1 −1

0 −1 1


 , A =


 −5 −2 2

0 1 0

−1 0 0


 ,

b1 =


 1

2

−2


 b2 =


 2

1

−7


 b3 =


 1

5

1




Ni = KiE, i = 1, 2, 3, Ki ∈ Rn×n

Ki is a constant matrix. Taking

V =


 1 1 0

1 8 1

0 1 1


 , W =


 1 8 0

0 5 1

0 1 1




it is easy to verify that(4) and the conditions in Theo-

rem1 are satisfied . Hence, the controller ui = −αi(bi +

Nix)T V Ex, i = 1, 2, 3 can stabilize the systems (23).

Example2: Consider the strictly singular bilinear systems as

follows 
 1 0 0

0 1 0

0 0 0





 ẋ1

ẋ2

ẋ3




=


 −1 0 0

0 −1 0

0 0 −1





 x1

x2

x3




+




1
4

0 0

0 1
4

0

0 0 1
4





 x1

x2

x3


 u1

+




1
3

0 0

0 1
3

0

0 0 1
3





 x1

x2

x3


 u2

(24)

We choose that V = Y1 = Y2 = X1 = X2 = I, W = 2I

and E1 = E2 =


 0 0 0

0 0 0

0 0 1


. According to Theorem2,

the controller ui = −sign[(Nix)T V Ex], i = 1, 2 can stabilize

the system (24).

4. Conclusions
This paper studies the stability problem for the singular bi-

linear systems. First the sufficient conditions are derived,

which ensures the existence of state feedback control laws

that will stabilize the singular bilinear systems. Then, for a

class of singular strictly bilinear systems, we give the method

to design a nonlinear controller to stabilize it.
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