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Abstract: In this paper, it is dealt with a controller design problem for nonlinear systems with higher order relative
degree. A robust adaptive control for uncertain nonlinear systems with stable zero dynamics will be proposed based on
the high-gain adaptive output feedback and backstepping strategies. The proposed method is useful in the case where
only the output signal is available.
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1. INTRODUCTION

It is well known that one can stabilize uncertain non-
linear systems with OFEP(output feedback exponentially
passive) property by a high-gain output feedback based
control with simple structure [1-3]. A nonlinear system is
said to be OFEP if there exists an output feedback such
that the resulting closed-loop system is exponentially pas-
sive [1]. The sufficient conditions for the nonlinear system
to be OFEP are that (1) the system has relative degree of
1, (2) the system be globally exponential minimum-phase
and (3) the nonlinearities of the system satisfy the Lip-
schitz condition. Under these conditions, there exists a
static output feedback such that the resulting closed-loop
system is exponentially passive [1,3]. As shown in [2,3],
using the OFEP property of the controlled system, one
can design an output feedback base controller. Since the
adaptive control methods based on the OFEP property
utilize only output signal in order to design the controller
and it is not required to design an observer for control,
the OFEP based control methods have very simple struc-
ture. Further since the methods have strong robustness
with respect to bounded disturbances in spite of its sim-
ple structure, the methods are considered powerful control
tools for uncertain nonlinear systems. Unfortunately the
OFEP conditions give very severe restrictions to practi-
cal applications of the above-mentioned adaptive schemes
because most practical systems do not satisfy the OFEP
condition.

With this problem in mind, some alleviation methods
to the OFEP condition have been proposed [3-5]. The
method by [3] and [4] alleviated the OFEP condition by
introducing a parallel feedforward compensator(PFC) in
parallel to the controlled system. Although this method
can solve the restriction for relative degree, since the con-
troller is designed for an augmented controlled system
with PFC, the bias error from the PFC output remain.
The method by [5] is a robust control scheme for non-
OFEP systems with nonlinear uncertainties but the meth-
od was for systems with relative degree of 1.

In this paper, we will propose a robust adaptive track-
ing control, which is based on high-gain output feedback
based adaptive control, for a class of uncertain minimum-
phase nonlinear systems with higher order relative degree.
We extend the robust adaptive control method in [5] to
uncertain nonlinear systems with higher order relative de-
gree by utilizing ’backstepping’ strategy. It is shown that
if the upper bound of uncertain nonlinearities can be eval-

uated by a function of the output signal then one can de-
sign a stable adaptive control system by using only the
output signal without a state observer. It is also shown
that a suitable choice of design parameters guarantees the
convergence of the tracking error to any design bound.

2. PROBLEM STATEMENT
Consider the following nth order nonlinear systems

with relative degree of k (1 ≤ i ≤ k , 2 ≤ k ≤ n):

ẋi = fi(x, t) + θixi+1

ẋk = fk(x, t) + θku(t) + bT”

”̇ = fη(x, t) + q(y,”)

y = x1 (1)

where x=[x1, · · · , xn]T ∈ Rn, ”=[xk+1, · · · , xn]T ∈ Rn−k

are state vectors, u(t) ∈ R, y(t) ∈ R are an input and
an output, f1(x, t), · · · , fk(x, t), fη(x, t) = [fk+1(x, t),

· · · , fn(x, t)]T are uncertain nonlinearties and bT =[bk+1,
· · · , bn], θ1, · · · , θk are unknown vector and constants re-
spectively.

Here we impose the following assumptions on the sys-
tem (1):

Assumption 1. The uncertain nonlinearities fi(x, t),
fη(x, t) can be evaluated by

|fi(x, t)| ≤ d1i|ψi(y)|+ d0i (1 ≤ i ≤ k)

||fη(x, t)|| ≤ d1η|ψη(y)|+ d0η (2)

with unknown constants d1i, d1η, d0i, d0η and known func-
tions ψi(y), ψη(y) which have the following property for
any variables y1 and y2:

|ψi(y1 + y2)| ≤ |ψ1i(y1, y2)||y1|+ |ψ2i(y2)|
|ψη(y1 + y2)| ≤ |ψ1η(y1, y2)||y1|+ |ψ2η(y2)| (3)

with known functions ψ1i, ψ1η and unknown smooth func-
tions ψ2i, ψ2η.

Assumption 2. There is an unknown positive constant
θ0 such that

θ̄1k :=

kY
i=1

θi ≥ θ0 > 0. (4)

Assumption 3. The function q(y,”) is globally Lips-
chitz, i.e., there exists a positive constant L1 such that

‖q(y1,”1)− q(y2,”2)‖ ≤ L1(|y1 − y2|+ ‖”1 − ”2‖). (5)



Assumption 4. Nominal part of the system (1) is expo-
nentially minimum-phase. That is, the zero dynamics of
the nominal system:

”̇(t) = q(0,”) (6)

is exponentially stable.

Under these assumptions the control objective is to
achieve the goal:

lim
t→∞

|y(t)− y∗(t)| ≤ δ (7)

for a given positive constant δ and a smooth reference
signal y∗(t) such as

|y∗(t)| ≤ β0, |ẏ∗(t)| ≤ β1. (8)

3. CONTROLLER DESIGN

3.1 Virtual system
For the controlled system (1) we introduce the follow-

ing (k − 1)th order virtual filter:

u̇fi = −λiufi + ufi+1 (1 ≤ i ≤ k − 2)

u̇fk−1 = −λk−1ufk−1 + u

λi > 0, (1 ≤ i ≤ k − 1). (9)

Considering the following variable transformation with fil-
ter signal ufi (2 ≤ l ≤ k − 1)

ξl =

l−1Y
i=1

θixl −
kY

i=1

θiufl−1 −
k−1X

i=l−1

λi

l−2Y
i=1

θixl−1 (10)

+
X

i1≤i2
i1,i2=l−1,··· ,k−1

λi1λi2

l−3Y
i=1

θixl−2 + (−1)l−1
X

i1≤···≤il−1
i1,··· ,il=l−1,··· ,k−1

λi1 · · ·λil−1x1

where X

i1≤···≤il
i1,··· ,il=k1,··· ,km

denotes the sum of all combinations of indices i1, i2, · · · , il
⊂ k1, k2, · · · , km and i1 < i2 < · · · < il, we can obtain the
following virtual system with uf1 as the control input:

ẏ = a(y, ‰) + θ̄1kuf1 + f1(y, ‰,”, t)

‰̇ = Aξ‰ + aξy + Bξ” + F (y, ‰,”, t)

”̇ = q(y,”) + fη(x, t)

u̇fi = −λiufi + ufi+1(1 ≤ i ≤ k − 2)

u̇fk−1 = −λk−1ufk−1 + u (11)

where ‰ = [ξ2, · · · , ξl, · · · ξk−1]
T ,

a(y, ‰) =

k−1X
i=1

λiy + ξ2 (12)

Aξ=

2
6666664

−λ1 1 0 · · · 0
0 −λ2 1 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 1

0 · · · · · · 0 −λk−1

3
7777775
,Bξ=

2
64

o
k−1Y
i=1

θib
T

3
75

(13)

and aξ = [aξ2 , · · · , aξl , · · · , aξk−1 ]
T , F = [F2, · · · , Fl, · · · ,

Fk−1]
T

aξl = (−1)l−1
X

i1≤···≤il−1
i1,··· ,il=l−1,··· ,k−1

λi1 · · ·λil (14)

Fl(x, t) =

l−1Y
i=1

θifl(x, t)−
k−1X

i=l−1

λi

l−2Y
i=1

θifl−1(x, t)

−
X

i1≤···≤il−1
i1,··· ,il=l−1,··· ,k−1

λi1 · · ·λil−1f1(x, t). (15)

From (12), a(y, ‰) is globally Lipschitz with respect to
(y, ‰), so that there exists a positive constant L2 such
that

|a(y1, ‰1)− a(y2, ‰2)| ≤ L2(|y1 − y2|+ ||‰1 − ‰2||) (16)

and Aξ is a stable matrix from (13) so that for any positive
definite matrix Qξ, there exists a positive matrix Pξ such
that

PξAξ + AT
ξ Pξ = −Qξ. (17)

Moreover, from assumption 1 and (15), the vector func-
tion F (y, ‰,”, t) can be evaluated by

||F (y, ‰,”, t)|| ≤ p1|φ(y)|+ p0 (18)

with unknown positive constants p1, p0 and known func-
tion φ(y) which have the following property for any vari-
ables y1 and y2:

|φ(y1 + y2)| ≤ |φ1(y1, y2)||y1|+ |φ2(y2)| (19)

with known function φ1(y1, y2) and unknown function
φ2(y2) which is smooth for all y2 ∈ R.

3.2 Controller design through Backstepping
[Step.1]Consider the tracking error ν = y− y∗. The error

system can be represented by

ν̇ = a(ν + y∗, ξ) + θ̄1kuf1 + f1(ν + y∗)− ẏ∗

‰̇ = Aξ‰ + aξ[ν + y∗] + Bξ” + F (ν + y∗, ‰,”)

”̇ = q(ν + y∗,”) + fη(ν + y∗, ‰,”). (20)

For this system, we introduce a virtual input α1 for uf1 ,
which is designed through a robust adaptive high-gain
feedback given by

α1(t) = −[k(t)ν(t) + uR(t)] (21)

k(t) = kI(t) + kP (t) (22)

k̇I(t) = γIν(t)2 − σIkI(t), kI(0) ≥ 0 (23)

kP (t) = γp[φ1(ν, y∗)4 + ψ1η(ν, y∗)4]ν(t)2 (24)

uR(t) = γRψ1(y)2ν(t), (25)

where γI , γpi, γR and σI are any positive constants.
Now, consider the following positive definite function:

V0(ν, ‰,”, k) =
1

2
ν2 + µ0ξ

T Pξ‰ + µ1W (”)

+
θ0

2γI
[kI − k∗]2, (26)



where µ0, µ1 are any positive constants and k∗ is an ideal
feedback gain to be determined later. W (”) is a positive
definite function which has the following properties:

∂W (”)

∂”
q(0,”) ≤ −κ1‖”(t)‖2,

‚‚‚‚
∂W (”)

∂”

‚‚‚‚ ≤ κ2‖”(t)‖

κ4‖”(t)‖2 ≤ ‖W (”)‖ ≤ κ3‖”(t)‖2. (27)

Since the system (1) is exponentially minimum-phase from
assumption 4, there exists such a positive definite func-
tion: W (”)[6]. The time derivative of (26) along the tra-
jectories of (20) and (23) yields

V̇0 = ν
ˆ
a(ν + y∗, ξ)− θ̄1k[kν + uR] + θ̄1k[uf1 − α1]

+ f1(ν + y∗)− ẏ∗
˜
+ µ0‰

T (AT
ξ Pξ + PξAξ)‰

+ 2µ0

ˆ‖aξ‖[|ν|+ |y∗|] + ‖Bξ‖‖”‖+ ‖F ‖˜‖Pξ‖‖‰‖

+ µ1
∂W

∂”

ˆ
q(ν + y∗,”) + fη(ν + y∗, ‰,”)

˜

+
θ0

γI
[kI − k∗][γIν2 − σIkI ]. (28)

It follows from assumptions 1∼4 and from (16)∼(19) that
(28) can be evaluated as

V̇0 ≤ −(θ0k
∗ − L2)ν

2 − µ0‰
T Qξ‰ − µ1κ1‖”‖2 + L2|ν|‖‰‖

+ 2µ0‖Bξ‖‖Pξ‖‖‰‖‖”‖+ µ1κ2L1β0‖”‖
+ 2µ0‖aξ‖‖Pξ‖(|ν|+ |y∗|)‖‰‖+ (L2β0 + d01 + β1)|ν|
+ 2µ0‖Pξ‖‖‰‖

ˆ
p1(|φ1(ν, y∗)||ν|+ |φ2(y

∗)|) + p0

˜

+ µ1κ2‖”‖
ˆ
d1η(|ψ1η(ν, y∗)||ν|+ |ψ2η(y∗)|) + d0η

˜

− θ̄1kkν2 + θ0kIν2 + µ1κ2L1|ν|‖”‖

− θ0

γI
σI [kI − k∗]k∗ − θ0

γI
σI [kI − k∗]2

− θ̄1kuRν + d11|ψ1(ν + y∗)||ν|+ θ̄1kω1ν, (29)

where ω1 = uf1 − α1. Here, from assumption 2 and since
k(t) ≥ 0 from (23) and (24), we have

−θ̄1kkν2 + θ0kIν2 − θ̄1kuRν

≤ −θ0kν2 + θ0kIν2 − θ0γRψ2
1ν2

≤ −θ0kpν2 − θ0γRψ2ν2. (30)

Thus the time derivative of V0 can be evaluated from
(29),(30) as follows:

V̇0 ≤ −[θ0k
∗ − v0]ν

2 − [µ0λmin[Qξ]− v1]‖‰‖2

−[µ1κ1 − v2]‖”‖2 − θ0
σI

γI
(1− ρ11) [kI − k∗]2

+θ̄1kνω1 + R0 (31)

with any positive constants ρ0 to ρ11, where

v0 = L2 + ρ10 +
(µ0L2)

2

4ρ9
+

(µ1κ2L1)
2

4ρ2
+

(µ0‖Pξ‖‖aξ‖)2
ρ4

(32)

v1 =
(µ0‖Bξ‖‖Pξ‖)2

ρ0
+ ρ3 + ρ4 + ρ5 + ρ6 + ρ9 (33)

v2 = ρ0 + ρ1 + ρ2 + ρ7 + ρ8 (34)

R0 =
(µ1κ2L1β0)

2

4ρ1
+

(µ0‖Pξ‖‖aξ‖β0)
2

ρ3
+

θ0σI

4ρ11γI
k∗2

+
(µ0‖Pξ‖)2

ρ6
(p1φ2M + p0)

2

+
(µ1κ2)

2

4ρ8
(d1ηψ2ηM + d0η)2

+
1

4ρ10
(L2β0 + d01 + β1)

2 +
1

4θ0γR
d2
1

+
1

4θ0γp

„
(µ0p1‖Pξ‖)2

ρ5
+

(µ1κ2d1η)2

4ρ7

«2

(35)

and φ2M and ψ2ηM are constants such that φ2M ≥ φ2(y
∗)

and ψ2ηM ≥ ψ2η(y∗) respectively. λmin[Qξ] denotes the
minimum value of the eigenvalue of the matrix Qξ.

[Step.2]The control objective can be achieved if the filter
signal uf1 is identical with the virtual input α1 which is
constructed for the virtual system with relative degree of
1. In this step, the error system between uf1 and α1, ω1-
system, will be considered and a virtual input α2 for the
filter signal uf2 is designed to make uf1 identify α1. The
ω1-system is obtained from (9) as follows:

ω̇1 = −λ1uf1 + uf2 − α̇1. (36)

Since α1 is constructed by y, y∗ and kI as in (21) to (25),
the time derivative of α1 is given by

α̇1 =
∂α1

∂y
ẏ +

∂α1

∂y∗
ẏ∗ +

∂α1

∂kI
k̇I

=
∂α1

∂y

"
k−1X
i=1

λiy + ξ2 + f1 + θ̄1kuf1

#

+
∂α1

∂y∗
ẏ∗ +

∂α1

∂kI
[γIν2 − σIkI ]. (37)

Then we design the virtual input α2 for the filter signal
uf2 as follows:

α2 = −c1ω1 + λ1uf1 − ε1Ψ1ω1

+
∂α1

∂y

k−1X
i=1

λiy +
∂α1

∂kI
(γIν2 − σIkI) (38)

Ψ1 =
`
ψ2

1 + u2
f1 + 2

´„∂α1

∂y

«2

+

„
∂α1

∂y∗

«2

(39)

where c1 and ε1 are any positive constants.
Now we consider the following positive definite func-

tion:

V1 =
1

2
ω2

1 + V0. (40)

The time derivative of V1 yields that

V̇1 = ω1(u̇f1 − α̇1) + V̇0

= ω1

»
−λ1uf1 + (ω2 + α2)− ∂α1

∂y
(

k−1X
i=1

λiy + ξ2

+f1 + θ̄1kuf1)− ∂α1

∂y∗
ẏ∗ − ∂α1

∂kI
[γIν2 − σIkI ]

–

+V̇0 (41)

where ω2 = uf2 − α2. Substituting (38) and (39) to (41),
the time derivative of V1 can be evaluated by

V̇1 ≤ −(c1 − ρ12)ω
2
1 + ω1ω2 +

1

4ε1
|ξ2|2 + R1 + R0

−[θ0k
∗ − v0 − θ̄2

1k

4ρ12
]ν2 − [µ0λmin[Qξ]− v1]‖‰‖2

−[µ1κ1 − v2]‖”‖2 − θ0
σI

γI
(1− ρ11)[kI − k∗]2 (42)

R1 =
1

4ε1

`
θ̄2
1k + d2

01 + d2
11 + β2

1

´
(43)

where ρ12 is any positive constant.



[Step.l](3 ≤ l ≤ k−1)If the filter signal ufl−1 is equivalent
to αl−1, then uf1 converges to α1 and the control objective
will be attained. Therefore, in this step we consider the
error system between ufl−1 and αl−1 and design a virtual
input αl so as to stabilize the error system. Define ωl−1 =
ufl−1 − αl−1. The error system, ωl−1-system, is given by

ω̇l−1 = −λl−1ufl−1 + ufl − α̇l−1. (44)

Considering that the virtual input αl−1 is constructed by
y, y∗, kI , uf1, · · · , ufl−2 , the time derivative of αl−1 can
be expressed by

α̇l−1 =
∂αl−1

∂y
ẏ +

∂αl−1

∂y∗
ẏ∗ +

∂αl−1

∂kI
k̇I +

l−2X
i=1

∂αl−1

∂ufi

u̇fi

=
∂αl−1

∂y

"
k−1X
i=1

λiy + ξ2 + f1 + θ̄1kuf1

#

+
∂αl−1

∂y∗
ẏ∗ +

∂αl−1

∂kI
(γIν2 − σIkI)

+

l−2X
i=1

∂αl−1

∂ufi

(−λiufi + ufi+1). (45)

Then the virtual input αl for filter signal ufl is designed
as follows:

αl = −cl−1ωl−1 − ωl−2 + λl−1ufl−1 − εl−1Ψl−1ωl−1

+
∂αl−1

∂y

k−1X
i=1

λl−1y +
∂αl−1

∂kI
(γIν2 − σIkI)

+

l−2X
i=1

∂αl−1

∂ufi

(−λiufi + ufi+1) (46)

Ψl−1 =
`
ψ2

1 + u2
f1 + 2

´„∂αl−1

∂y

«2

+

„
∂αl−1

∂y∗

«2

(47)

where cl−1 and εl−1 are any positive constants.
Here we consider the following positive definite func-

tion:

Vl−1 =
1

2
ω2

l−1 + Vl−2. (48)

The time derivative of Vl−1 yields that

V̇l−1 = ωl−1(u̇fl−1 − α̇l−1) + V̇l−2

= ωl−1

»
−λl−1ufl−1 + (ωl + αl)

−∂αl−1

∂y
(

k−1X
i=1

λiy + ξ2 + f1 + θ̄1kuf1)

−∂αl−1

∂y∗
ẏ∗ − ∂αl−1

∂kI
[γIν2 − σIkI ]

−
l−2X
i=1

∂αl−1

∂ufi

(−λiufi + ufi+1)

–
+ V̇l−2 (49)

where ωl = ufl −αl. From (46) and (47), the time deriva-
tive of V1 can be evaluated by

V̇l−1 ≤ −(c1 − ρ12)ω
2
1 −

l−1X
i=2

ciω
2
i + ωl−1ωl

+

l−1X
i=1

1

4εi
|ξ2|2 +

l−1X
i=0

Ri

−[θ0k
∗ − v0 − θ̄2

1k

4ρ12
]ν2 − [µ0λmin[Qξ]− v1]‖‰‖2

−[µ1κ1 − v2]‖”‖2 − θ0
σI

γI
(1− ρ11)[kI − k∗]2 (50)

where

Rl−1 =
1

4εl−1
(θ̄2

1k + d2
01 + d2

11 + β2
1). (51)

[Step.k]This is the last step, an actual control input u is
obtained. The input u is designed by the same way of
step.l as follows:

k = 2 :

u = α2 (52)

k ≥ 3 :

u = −ck−1ωk−1 − ωk−2 + λk−1ufk−1 − εk−1Ψk−1ωk−1

+
∂αk−1

∂y

k−1X
i=1

λk−1y +
∂αk−1

∂kI
(γIν2 − σIkI)

+

k−2X
i=1

∂αk−1

∂ufi

(−λiufi + ufi+1) (53)

Ψk−1 =
`
ψ2

1 + u2
f1 + 2

´„∂αk−1

∂y

«2

+

„
∂αk−1

∂y∗

«2

(54)

where ck−1 and εk−1 are any positive constants.
In this step we again consider the following positive

definite function:

Vk−1 =
1

2
ω2

k−1 + Vk−2. (55)

The time derivative of Vk−1 can be evaluated as

V̇k−1 ≤ −(c1 − ρ12)ω
2
1 −

k−1X
i=2

ciω
2
i +

k−1X
i=0

Ri

−[θ0k
∗ − v0 − θ̄2

1k

4ρ12
]ν2

−
»
µ0λmin[Qξ]− v1 −

k−1X
i=1

1

4εi

–
‖‰‖2 (56)

−[µ1κ1 − v2]‖”‖2 − θ0
σI

γI
(1− ρ11)[kI − k∗]2

where

Rk−1 =
1

4εk−1
(θ̄2

1k + d2
01 + d2

11 + β2
1) (57)

by using the same manner in step.l. Finally, setting ρ0 =
12µ0|BξPξ|2

λmin[Qξ]
, ρ1 = ρ2 = ρ7 = ρ8 = µ1κ1

12
, ρ3 = ρ4 =

ρ5 = ρ6 = ρ9 =
µ0λmin[Qξ]

12
, ρ11 = 1

2
, ρ12 = c1

2
, µ0 =

Pk−1
i=1

1
λmin[Qξ]εi

and µ1 =
48µ0|BξPξ|2
λmin[Qξ]κ1

, we obtain

V̇k−1 ≤ −1

2
c1ω

2
1 −

k−1X
i=2

ciω
2
i − [θ0k

∗ − v0 − θ̄2
1k

2
]ν2

−µ0λmin[Qξ]

4
‖‰‖2 − µ1κ1

2
‖”‖2

−θ0
σI

2γI
[kI − k∗]2 + RT (58)



where

RT :=

k−1X
i=0

Ri

=

k−1X
i=1

144‖Bξ‖‖Pξ‖2κ2
2

λ2
min[Qξ]κ2

1εi

ˆ
(L1β0)

2+(d1ηψ2ηM + d0η)2
˜

+

k−1X
i=1

12‖Pξ‖2
λ2

min[Qξ]εi

ˆ
(‖aξ‖β0)

2+(p1φ2M + p0)
2˜

+
1

4ρ10
(L2β0 + d01 + β1)

2 +
θ0σI

2γI
k∗2 +

1

4θ0γR
d2
1

+
1

4θ0γp
(
12µ0p

2
1‖Pξ‖2

λmin[Qξ]
+

3µ1κ
2
2d

2
1η

κ1
)2

+

k−1X
i=1

1

4εi
(θ̄2

1k + d2
01 + d2

11 + β2
1). (59)

Since it follows from (27) that ‖”‖2 ≤ 1
κ3

W (”), we have

V̇k−1 ≤ −1

2
c1ω

2
1 −

k−1X
i=2

ciω
2
i − κ1

2κ3

»
µ1W (”) +

1

2
ν2

–

−µ0

4
λmin[Q]‖‰‖2− 1

2
σI

θ0

γI
[kI − k∗]2+ RT (60)

by setting the ideal feedback gain k∗ as

k∗ ≥ 1

θ0

»
κ1

4κ3
+ L2 + ρ10 +

3µ0L
2
2

λmin[Qξ]

+
3µ1κ

2
2L

2
1

κ1
+

12µ0‖Pξ‖‖aξ‖2
λmin[Qξ]

+
θ̄2
1k

2

–
. (61)

Consequently the time derivative of the positive definite
function Vk−1 can be evaluated by

V̇k−1 ≤ −αvVk−1 + RT (62)

αv = min

»
c1, 2c2 · · · , 2ck−1,

κ1

2κ3
,

λmin[Qξ]

4λmax[Pξ]
, σI

–
(63)

where λmax[Pξ] denotes the maximum value of the eigen-
value of the matrix Pξ. It is apparent from (62),(63) that
all the signals in the closed-loop system with the controller
(52) or (53) are bounded. We also obtain that

lim
t→∞

Vk−1 ≤ RT /αv. (64)

From the fact that ν2 ≤ 2Vk−1, it follows that

lim
t→∞

ν2 ≤ 2RT /αv. (65)

Thus, the goal (7) is achieved for δ2 ≤ 2RT /αv. It can
also be confirmed that the appropriate choice of µ0, µ1

and ρ10 and design parameters γI , γp, γR and ε1 ∼ εk−1

ensures the goal (7) for any δ.

Now, we have the following theorem concerning the
stability of the resulting control system.

Theorem 1. Under assumptions 1∼4, all the signals in
the closed-loop system with the controller (52) or (53)
are bounded and the goal (7) is achieved by appropriate
choice of design parameters γI , γp, γR and ε1, · · · , εk−1.

4. NUMERICAL SIMULATION

Here the effectiveness of the proposed control scheme
will be confirmed through a numerical simulation.

Consider the following SISO affine nonlinear system:

ẋ1 = f1(x1, x2) + θ1x2

ẋ2 = f2(x1, x2, η3) + θ2u + bη3

η̇3 = fη(x1) + q(x1, η3)

y = x1 (66)

where

f1(x1, x2) = x2
1 cos x2

f2(x1, x2, η3) = x2
1 exp (−x2

2)sgn(η3), fη(x1) = x3
1

q(x1, η3) = x1 − η3, θ1 = 2, θ2 = 3, b = −1.

The controlled system given in (66) has a relative degree of
2 and is exponentially minimum-phase. In this simulation,
it is supposed that we have a priori information about
the controlled system such that the nonlinearity q(y, η3)
is Lipshitz in (y, η3) and nonlinear functions f1, f2 and fη

are not Lipshitz but can be evaluated by

|f1| ≤ d11|ψ1|+ d01 (67)

|f2| ≤ d12|ψ2|+ d02 (68)

|fη| ≤ d1η|ψη|+ d0η (69)

ψ1 = ψ2 = y2, ψη = y3.

Here we introduce a virtual filter:

uf1 = −λ1uf1 + u, λ1 > 0. (70)

Applying the following variable transformation:

ξ2 = θ1x2 − θ1θ2uf1 − λ1x1, (71)

the controlled system (66) can be represented by

ẏ = a(y, ξ) + θ1θ2uf1 + f1(y, ξ2)

ξ̇2 = Aξξ2 + aξy + Bξη3 + F (y, ξ2, η3)

η̇3 = q(y, η3) + fη(y, η3) (72)

Aξ = −λ1, aξ = −λ1, Bξ = θ1b

F (y, ξ2, η3) = θ1f2(y, ξ2, η3)− λ1f1(y, ξ2).

From (67) and (68) the nonlinear function F can be eval-
uated by

|F (y, ξ2, η3)| ≤ |θ1|(d12|ψ2|+ d02) + λ1(d11|ψ1|+ d01)

≤ p1|φ(y)|+ p0 (73)

where φ(y) = y2 and p0, p1 are unknown positive con-
stants. Furthermore, from (69) and (73) the nonlinear
functions ψη(y) and φ(y) can be decomposed as follows:

|ψη(y)| ≤ |ψ1η(y)||y| (74)

|φ(y)| ≤ |φ1(y)||y| (75)

ψ1η(y) = y2, φ1(y) = y

so as to satisfy (3) and (19).
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By utilizing functions ψ1(y), ψ1η(y), φ1(y), the con-
trol input is obtained as

u = −c1ω1 + λ1uf1 − ε1Ψ1ω1

+
∂α1

∂y
λ1y +

∂α1

∂kI
(γIν2 − σIkI) (76)

Ψ1 = (ψ2
1 + u2

f1 + 2)

„
∂α1

∂y

«2

+

„
∂α1

∂y∗

«2

α1 = −[kν + uR], k = kI + kp

k̇I = γIν2 − σIkI , kp = γp[φ4
1 + ψ4

1η]ν2

uR = γRψ2
1ν, ν = y − y∗, ω1 = uf1 − α1

∂α1

∂y
= −`4γp[φ3

1 + 2yψ3
1η]ν3 + 2kp + k

+ 4γRψ1yν + γRψ2
1

´

∂α1

∂y∗
= −2kp + k − γRψ2

1 ,
∂α1

∂kI
= −ν.

In this simulation the reference signal y∗(t) is given
by

y∗ = y∗1 + y∗2 (77)

y∗1 = (1− exp{−t}), y∗2 =


0 t < 10

0.2 sin π(t− 10) t ≥ 10

and we set the design parameters as follows:

c1 = 1, λ1 = 1, ε1 = 0.1, kI(0) = 4, γI = 1000 (78)

γp = γR = 100, σI = 0.1, ψ1 = ψ1η = y2, φ1 = y.

Fig.1∼Fig.4 show the simulation results of the proposed
method. It is confirmed that the proposed controller gives
a good tracking performance even though there exist un-
known nonlinearities in controlled system with relative
degree of greater than 1.
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5. CONCLUSION
In this paper, we proposed a robust high-gain adap-

tive output feedback control for a class of minimum-phase
nonlinear systems with higher order relative degree. It
was shown that we can design the robust high-gain adap-
tive output feedback controller via backstepping strategy
by introducing a virtual filter in the case where only out-
put signal is available. It was also confirmed that the ap-
propriate choice of design parameters ensures the tracking
error be small, i.e, the tracking error converges into any
given bound.
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