Hierarchical Text Categorization using Support Vector Machine

지지 벡터 기계를 이용한 계층적 문서 분류

  • 윤용욱 (포항공과대학교 정보통신학과) ;
  • 이창기 (포항공과대학교 컴퓨터공학과) ;
  • 이근배 (포항공과대학교 컴퓨터공학과)
  • Published : 2003.10.10

Abstract

인터넷을 통해 생성, 전달되는 문서 량이 급격히 많아짐에 따라, 정보의 접근을 용이하게 하기 위한 문서의 자동 분류 기능이 절실히 요구되고 있다. SVM(Support Vector Machine)은 최근에 문서 분류에 널리 쓰이고 있는 기법으로 다른 분류기에 비하여 좋은 성능을 보여주고 있다. 하지만 SVM은 현재까지 주로 비 계층 평탄화(flat)된 분류 응용에 효과적으로 적용되어 왔다. 이와 달리 본 논문은 문서 분류에 있어서 최종 분류 class를 한번에 출력하는 비 계층 분류보다는, 비슷한 성질을 갖는 class의 집합을 계층적 구조로 묶어 분류하는 계층적 분류 기법이 보다 사람이 이해하기 쉽고 사용하기 편리하며 더 효과적이라는 것을 보이고, 실험을 통해 계층적 분류를 위한 효과적인 SVM분류기를 개발하여 비 계층 분류보다 좋은 분류 성능을 보여 줄 수 있음을 확인한다.

Keywords