OD8. Dynamics of callose deposition during reproductive events in sexual and apomictic Allium species

Ki-Won Oh^{1)*}, Chan-Sik Jung¹⁾, Hyeun-Kyeung Kim¹⁾, Jea-Duck Sung, Chung-Berm Park¹⁾, Yong-Ho Kwack¹⁾, Byung Joo Kim²⁾, Duck-Yong Suh¹⁾, Young-Hyun Hwang³⁾ ¹⁾ National Yeongnam Agricultural Experiment Station, RDA, Milyang, 627-130, Korea ²⁾ Rural Development Administration, Suwon, 441-100, Korea 1) Kyungpook National University, Taegu, 702-701, Korea

Objectives

Evaluation of the relationship between callose deposition and the mode of reproduction in Allium species

Materials and Methods

- 1. Materials A. senescens var. minor, A. senescens and A. tuberosum.
- 2. Methods Clearing in aqueous clearing medium and observed under fluorescence microscope

Results and Discussion

Callose accumulation was started at telophase stage of MMC and persisted to two nucleate stage of megaspore in sexual diploid A. senescens var. minor and apomictic hexaploid A. senescens. Callose began to be accumulated in equatorial plane of MMC and restricted in degenerating megaspore in A. senescens var. minor and A. senescens. However, in apomictic tetraploid A. tuberosum, callose accumulation was started at diplotene stage of MMC and it was persisted to four nucleate stage of megaspore. During first meiosis of MMC, it was restricted in micropylar half of cell wall of MMC. There was no difference in callose accumulation pattern between sexual and apomictic Allium species.

Table 1. Relationship between developmental stages and meiocyte callose deposition in three Allium species.

Species	Stages of megasporogenesis					Stages of	
						megagametogenesis	
	$L^{\sim}P^{i}$	$D\&D^2$	MI&AI ³	TI&IK4	MeS ⁵	4NE ⁶	8NE'
A. senescens var. minor	0/50	0/50	0/50	50/50	50/50	1/50	0/50
A. senescens	0/50	0/50	0/50	50/50	50/50	0/50	0/50
A. tuberosum	0/50	45/50	50/50	50/50	50/50	37/50	0/50

¹L^P: leptotene, zygotene and pachytene ²D&D: diplotene and diakinesis

³MI&AI: first metaphase and first anaphase ⁴TI&IK: first telophase and interkinesis

⁵MeS: two nucleate megaspore

⁶4NE: four nucleate embryo sac

⁷8NE: eight nucleate embryo sac

E-mail: ohkw1004@rda.go.kr

^{*} Corresponding author --- TEL: 055-350-1232,