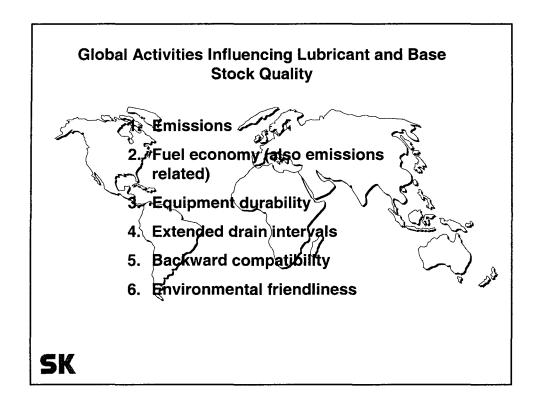
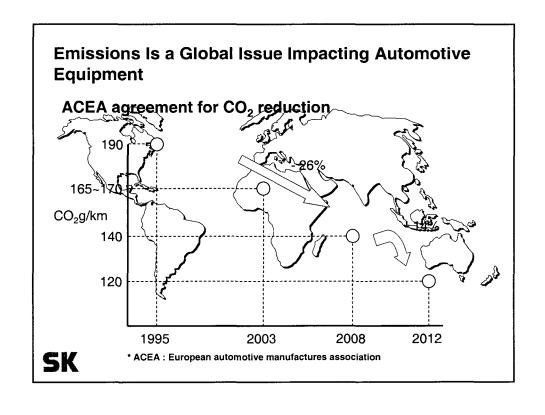

초청강연

고급기유 및 그 응용제품의 개발동향


<u>문우식</u>, H. Ernest Henderson, 류재곤

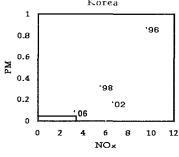

(SK 대덕기술원 석유제품연구팀장)

Outline

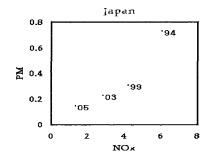
- 1. Global Trends
 - Emissions, Fuel Economy
- 2. Technology Trends
 - Lubricants Requirements
 - Base Stock Implications
- 3. High Quality Base Stock
 - SK's Experience
- 4. Application of Group III Base Stock
 - PCMO, HDDO
- 5. Overview of Lube Supply & Demand
 - Base Stock & Lubricants
- 6. Conclusions

Emission and Fuel Economy of Passenger Cars

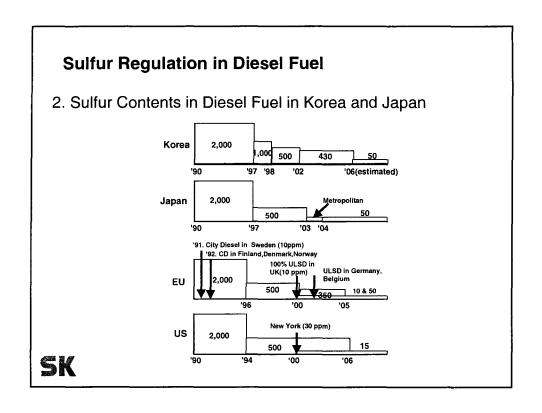
► Emission regulation getting severe

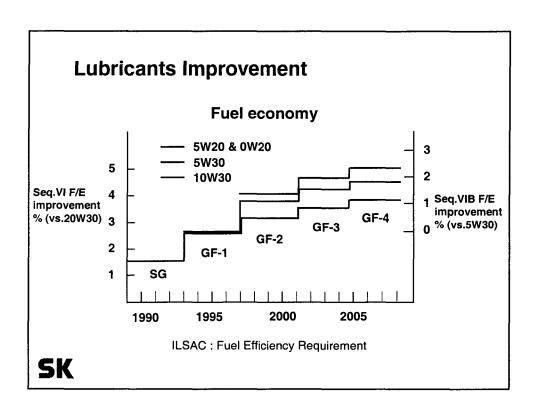

		CO	нс	NOx
Japan	Current	1.15	0.14	0.11
	From 2005	1.15	0.05	0.05
Korea	From 2001	2.11	0.16	0.25
	From 2003	2.11	0.047	0.12
Europe	Euro II (2000)	2.3	0.2	0.15
	Euro III (2005)	1.0	0.1	0.08

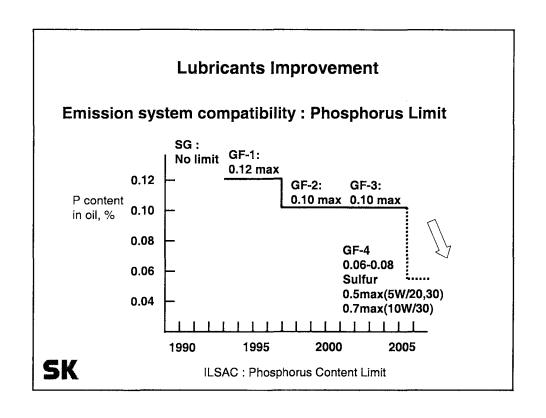
- ► Fuel economy target getting higher
- o Super Fuel Economy Oil (SFEO) : Seq. VIB + Alpha (in-house test)
 Korean OEM start to develop SFEO with GF-4 performance to apply from 2005
 - Japanese OEM already developed and applied SFEO
- o Lowered viscosity to meet fuel economy: 0W20 / 5W20 / 5W30
- o Japanese 2010 fuel economy target: 15.3 Km/L (21.4% improvement from 1995)

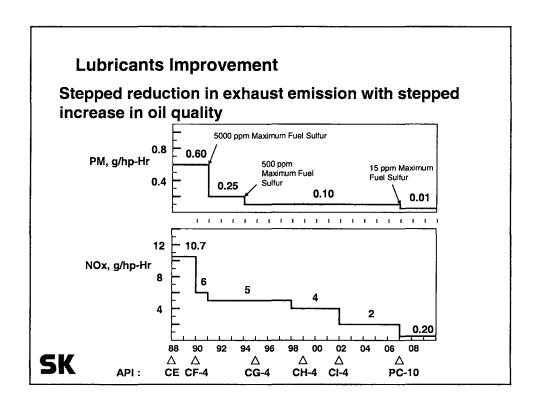


Emission Regulations of Diesel Cars


1. Heavy Duty Diesel Emission Regulations in the Korea and Japan




2003: EURO III Equivalent 2006: EURO IV Equivalent



Global Automotive and Industrial Trends

Areas for Improvement

Social Needs

- Environmental Protection
- Resources Saving

OEM/ Customer Needs

- Higher Performance
- Better Comforts
- Improved Economy
- Longer Equipment Life

Equipment Requirements

Low Emission

- Combustion: Timing Retard, Cool. EGR
- After Treatment: DPF, DOC, SCR Fuel Economy/ Higher Performance
- Higher Efficiency: DI/GDI, Lean Burn,
- Low/ High Friction
 Durability/ Drivability/ Safety
- Electronic Management
- New Design

SK

Global Lubricant Concerns and Requirements

Lubricant Concerns

- Higher Oil Stress:
 Temperature, Pressure,
 Shear Rate
- Deposit Control
- Wear Protection
- Fuel Efficiency & Retention
- Long Drain Interval
- Oil-Related Emission/
 Oil Consumption
- Compatibility with Emission Control Devices
- Foaming and Air Release

Lubricants Requirements

- Thermal/ Oxidative Stability
- Detergency/ Dispersancy
- Wear Prevention
- Low/Optimum Viscosity
- Low Surface Friction
- Oil Film Strength
- Restrictions
- Volatility, Ash, S, P (SAPS)
- Foaming, Shear Stability

Lubricant Trends - Overview

- Performance specifications to meet OEM equipment and mandated regulations will result in the following product improvements:
 - Thermal and Oxidative Stability
 - Sludge and Varnish Control
 - "Fill for Life"
 - Reduced Volatility (Emissions)
 - Low Viscosity (Fuel Economy CAFE)
 - Low-Temperature Viscometrics
 - High-Temperature Film-Forming Capability
 - Environmentally Friendly
- Continued shift towards highly saturated base stocks to compliment additive technology to meet performance challenges

SK

Global Activities - Base Oil Implications

North America

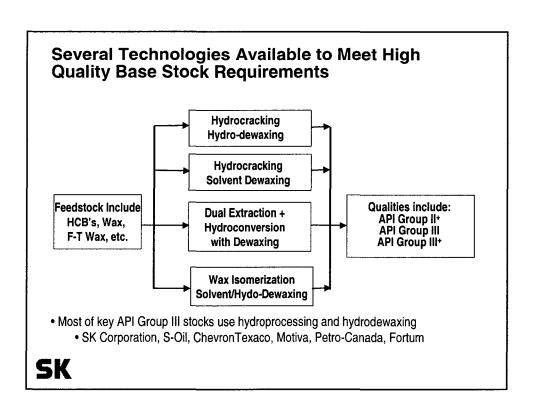
- Strong growth in ARI Group II
- Strong growth in hydrodewaxing for fluidity
- Introduction of Af Group II+ with ILSAC GF-3
- •API Group () allowed as synthetic

Europe

- Significant growth in API Group III
- Advanced ARI Group I base stocks
- Low SAPS to impact API Group I quality, increase API Group III demands

Asia Pacific

- Significant investment in API Group III, production
- ARI Group I/III
 developed for premium auto oils


High-Quality Synthetic Base Oils

- Four categories of high quality base oils can satisfy stringent performance requirements
- 1. Hydrocarbon-type Synthetics: Poly Alpha Olefins (API Group IV)
- 2. Ester-type Synthetics: Di-esters, Poly-ester (API Group V)
- 3. Wax-isomerized Base Oils: GTL wax, Slack Wax (API Group III+)
- 4. Severely Hydro-Cracked Base oils (API Group II+, III):

Fuels Hydro-Cracker Bottom Lubes Hydro-Cracker

Hydrocracking with solvent extraction

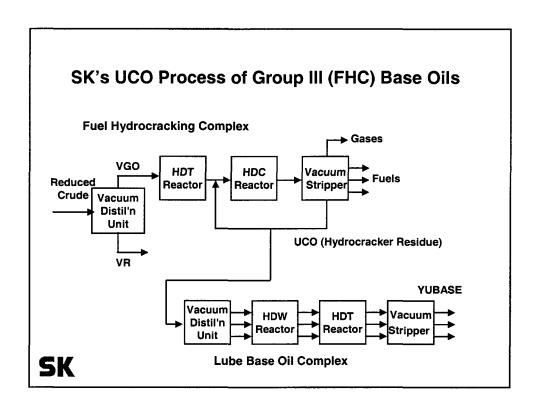
The Most Economic
Production Route

Features of API Group III Base Oils

- □ Low Volatility, High Flash & Fire Point
 - Narrow-Cut
- □ Excellent Thermal and Oxidative stability
 - Maximum Saturation & Purity
 - Near zero Aromatics, Sulfur-, Nitrogen-, Oxygen-Containing Compounds
- □ Excellent Low temperature fluidity
 - High Paraffin Contents, Deep De-waxing
- □ Inherent High Viscosity Index
- □ Excellent Additive Response,
 Optimum Solubility and Seal Compatibility
- □ Can be marketed in most areas as 'synthetic'

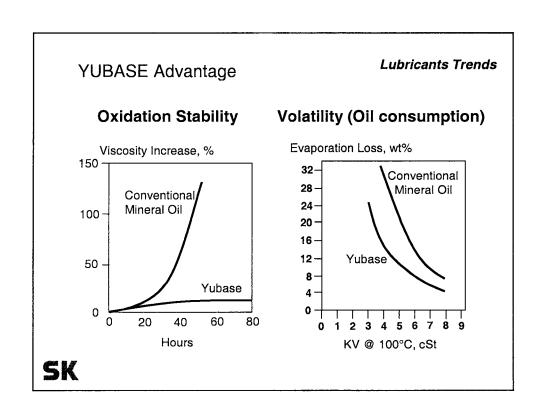
SK Corporation Base Oil History

- ☐ 1st commercial facility operated at SK's Ulsan refinery in Oct.1995 with 3,500 bpd of VHVI base oils named Yubase.
- ☐ Presently, about 8,700 bpd are produced through step-bystep investments to increase its capacity and yield.
- ☐ 2nd plant is scheduled to begin operations 2Q'04
 - Reflects capacity increase to 15,000 bpd.
- ☐ Recycled hydrocracker residue is utilized as feedstocks
- ☐ All hydro-processing: 1st utilization of catalytic dewaxing fuels hydrocracker bottom oils and high pressure HDT
- ☐ Economic and Licensed Owned Process:
 - Integration of fuels hydrocracker and lube process,
 - Low investment and operating cost

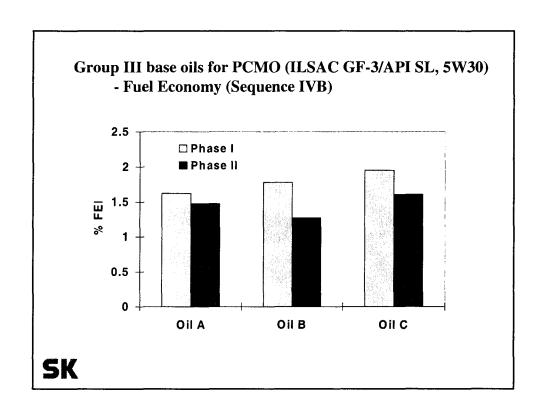

SK Refining Capacity and Region Focus

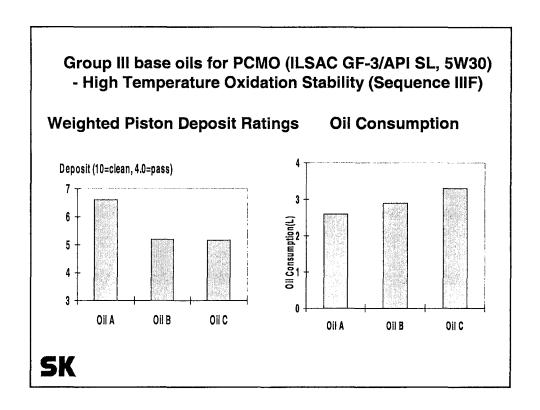
- Ulsan #1 plant @ 8,700 BPCD
 - Current production has global focus

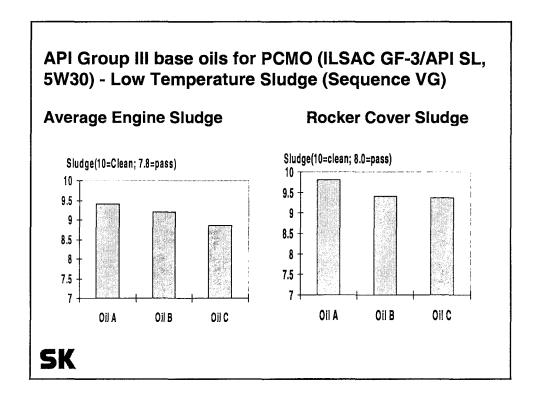
- Ulsan #2 plant @ 6,000 BPCD
 - Production to support export market
 - Full Yubase slate
 - Fungible with Ulsan #1 production
 - Excellent long term fit for NA and European markets



Typical Properties for Yubase API Group II and III Base Stocks


Base Stock	ASTM Method	Yubase L3	Yubase 3	Yubase 4	Yubase 6	Yubase 7
Appearance	Visual	C&B	C&B	C&B	C&B	C&B
Density, kg/L	D1298	0.8324	0.8299	0.8338	0.8423	0.8463
KV @ 40°C, cSt	D445	12.73	12.43	19.57	36.82	43.54
KV @ 100°C, cSt	D445	3.12	3.12	4.23	6.52	7.18
Viscosity Index	D2270	105	112	122	131	126
NOACK Volatility, wt%	D5800	36	36	14.5	7	4.2
Pour Point, °C	D92	-45	-24	-15	-15	-15
Flash Point, °C	D97	190	204	230	240	260



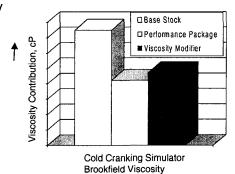


API Group III Options for N.A. PCMO - ILSAC GF-3/API SL, 5W30 - Physico-chemical Properties

Oil Code	Oil A	Oil B	Oil C
Base oil blend(Group)	111	II &II	1 & 111
KV @ 40°C, cSt	58.07	63.70	59.70
KV @100°C, cSt	10.19	10.55	10.25
CCS @ -30°C, cP	4,630	5,860	5,120
CCS @ -35°C, cP	9,045	12,085	11,180
MRV @-35°C, cP	17,000	23,100	28,500
HTHS@150°C, cP	3.03	3.08	2.95
Volatility(Noack),wt%	12.0	13.1	14.7

Conclusions from PCMO Study

- ILSAC GF-3 sequence engine tests were conducted using engine oils formulated with Group III and conventional-mixed base oils. The following was found:
- Group III base oil results in better performance, especially in fuel economy retention, oxidation and sludge control than the combination of group III with I or II.
- Meanwhile, other performance showed no considerable differences..


Approval of API SL/ ILSAC GF-3 PCMO

		5W-20	5W-30	10W-30	Spec.(5W)
	Yubase 4,wt%	70.0	85.0	20.0	
	Yubase 6,wt%	30.0	15.0	80.0	
	Additives	Balanced	<-	<-	
-	Seq.Engine Tests	IIIF,VIB	IIIF,VG, VIII,VIA,	IVB VIB	
-	Viscosity@100C,cSt	7.95	10.19	10.53	5.6~9.3~12.5
-	CCS @-30C,cP	4,264	4,630	7,410	6,600 max
	@-35C,cP	8,255	9,045	-	6,200 min
- 1	MRV TP-1@-35C,cP	12,500	17,000	13,300(-30C)	60,000 min
-	HTHS Viscosity,cP	2.6	3.03	3.23	2.6/2.9 min
-	Noack Volatility,%	10.5	12	8.2	15 max
-	TEOST(MHT-4)				
	Deposit Weght, mg	39.9	38.0	40.1	45 max
1					

Formulation Principles - Finished Oils

- Rapid changes in automotive performance creating significant opportunity for hydroprocessed base stocks
 - Low temperature fluidity
 - SAE grade optimization
 - Fuel economy
 - Shear stability
 - Volatility

Challenge - How to achieve economically and profitably?

YUBASE Advantage Advantage over Group II and II+ in ILSAC GF-3 (API SL)

	Oil A	Oil B	Oil C	Oil D	Oil E
	Gp III 100% 5W-30	Gp II* 100% 5W-30	Gp II ⁺ 100% 5W-30	Gp 100% 5W-30	Gp & 5W-30
ormulation, % weight	-		,		
GF-3 Additive	10.35	10.35	10.35	10.35	10.35
Viscosity Modifier	4.5	4.5	5.5	5	5
API Group II (100N)				75	35
API Group II (260N)				25	
API Group II ⁺ (4.5cSt)		50	60		
API Group II [*] (6 cSt)		50	40		
API Group III (4 cSt)	50				
APIO Group III (6 cSt)	50				65
est Result					
Formulation Viscosity @ 100캜, cSt	10.1	9.91	10.2	9.3	10.67
Base Oil Viscosity @ 100캜, cSt	5.4	5.2	5.1	4.7	5.56
Formulation Viscosity Index	159	150	152	143	152
CCS @ -30캜; 6600 cP, max. for 5W	5410	7191	6480	6324	6386
CCS@ -35数; 6200 cP, max. for 0W	10032	12188	11121	11383	11493
Noack volatility, wt%	10.8	9.2	10.4	23.6	14.6

Blended Base Oil Requirements for Current ILSAC GF-3 PCMO Products

SAE Grade	5W-20	5W-30	10W-30
(No. of Blends)	(4 Blends)	(5 Blends)	(4 Blends)
Average Base Oil Blend Properties			
KV @ 100°C, cSt	4.6	4.8	5.7
Viscosity Index	118	114	105
CCS Viscosity @ -25°C, cP	1365	1810	4000
CCS Viscosity @ -20°C, cP	-	-	2185
NOACK Volatility, wt%	14.8	14.3	14.3
Base Oil Composition, %			
API Group I, II	0	0 – 45	65 – 100
API Group II+	100	55 – 100	0 – 35
API Group III	0	0	0

Based on Lubrizol 20000 & 20000A DI

Yubase Provides Significant Formulation Flexibility in PCMO and HDMO Products

SAE Grade	5W-30	5W-30	10W-30	10W-30
(No. of Blends)	Conventional	Synthetic	Conventional	Synthetic
	(5 Blends)	(Yubase)	(4 Blends)	(Yubase)
Average Base Oil Blend Properties				
KV @ 100°C, cSt	4.8	5.5	5.7	6.5
Viscosity Index	114	130	105	130
CCS Viscosity @ -25°C, cP	1810	1800	4000	2815
CCS Viscosity @ -20°C, cP	•	-	2185	1630
NOACK Volatility, wt%	14.3	9.5	14.3	7.3

Based on Lubrizol 20000 & 20000A DI

Impact of GF-4 on Group III

- Severity of the Seq IIIG => Limitation on the use of Group I Base stocks.
- Increase performance in the VIB (Fuel Economy) may pose challenge to high VI stocks.

SK

Development of High Quality Base Stocks

Projected base stock changes ILSAC GF-4 vs GF-3

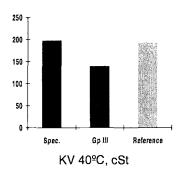
- 1. SAE 0W-20 (New Grade in GF-4)
 - ILSAC GF-4 to require API Group III with some PAO
- 2. SAE 5W-20
 - ILSAC GF-3 and ILSAC GF-4 to remain based on API Group II+
- 3. SAE 5W-30
 - Presently formulated on API Group II+ with Gp II and I (limited)
 - ILSAC GF-4 to see increase in API Group II+ concentration with API Group II only (no Group I)
- 4. SAE 10W-30/40
 - Presently formulated on Group I and II with some II⁺
 - ILSAC GF-4 to see slight increase in API Group II+ content but considerable shift from API Group I to API Group II

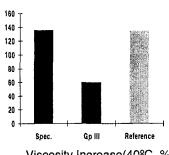
Opportunity to Develop New API Group I+ Based on Yubase Group III and Group I

SAE Grade	5W-20	5W-30
Blended Base Oil Properties		
KV @ 100°C, cSt	4.6	4.8
Viscosity Index	117	114
CCS Viscosity @ -25°C, cP	~1365	~1865
NOACK Volatility, wt%	14.8	15.1
Base Oil Composition, %		
API Group I	30	50
API Group II+	0	0
API Group III (Yubase 4,6)	70	50

Based on Lubrizol 20000 & 20000A DI

Approval of Premium European/North American PCMO


	5W-30	5W-30	5W-30	5W-40	5W-40
Yubase 4	69.0	83.0	98.1	65.6	72.8
Yubase 6	31.0	17.0	1.9	34.4	27.2
Additives	Balance	ed <-	<-	<-	<-
Performance					
• API	SL/CF	SL/CF	SL/CF	SL/CF	SL/CF
• ACEA	- /	1/A5/B1	+B5	A3/B3	A3/B3/B4
• MB	-	-		229.1	229.3
• VW	-	-		502/505	502/505
 Porsche 	-	-		Porsche	Porsche
BMW Lon	g Life -	-		-	LL-98
Opel GM		-		-	LL-B-025
SK					

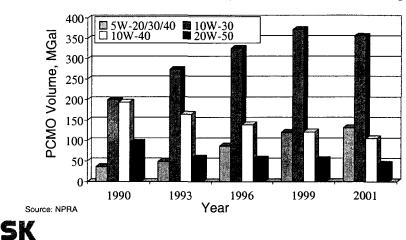

API Group III Provides Excellent Response in VW T-4 Engine Test

Oxidation Stability

Engine Test

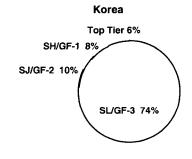
- VW T-4 (Oxidation, piston cleanliness, MB 229.3, VW502.00)

Viscosity Increase(40°C, %)

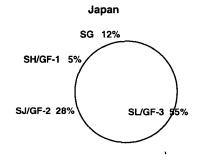


Performance of ACEA E2/E3/E5, MB 228.3 HDDO

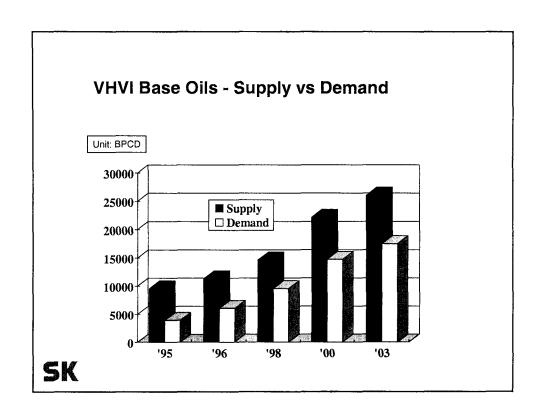
Viscosity G	Viscosity Grade: 10W-40		Base Oils: Yubase	6+8
Viscosity@	Viscosity@100°C 14.0		CCS @-20°C	3070 cP
HTHS Visco	osity	3.85 cP	Noack Volatility	7.6 %
	Requi	irements	E3/228.3/228.5	Results
OM 364LA	Avera Cylind Sludge	Polish, % ge Piston Merit ler Wear,um e Merit ensumption,kg	1.0 / 1.0/ 0.5max 45 / 45 / 50 min 3.0 / 3.0/ 2.5max 9.5 / 9.5/ 9.6min 12 / 12 / 10 max	0.3 58.8 1.3 9.7 8.7
OM 602A	Cylind Bore f Piston Engind Viscos	Wear,um ler Wear,um av Polish, % av Cleanl. Merit e Sludge Merit sity Inc.@40°C,% onsumption,kg	50 / 45 / 45 max NR / 15 / 15 max NR / 4.5/ 3.0max NR / 24 / 26 min NR / 8.9/ 9.0min NR / 70 / 60 max NR / 10 / 10 max	6.8 6.5 0.2 30.8 9.5 16.9 5.8

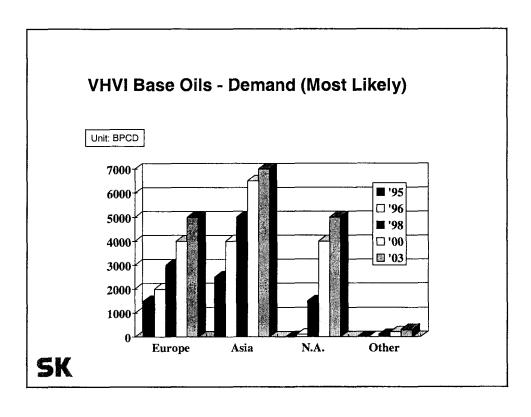

PCMO Market Shows Continued Shift To Lower Viscosity SAE Grades

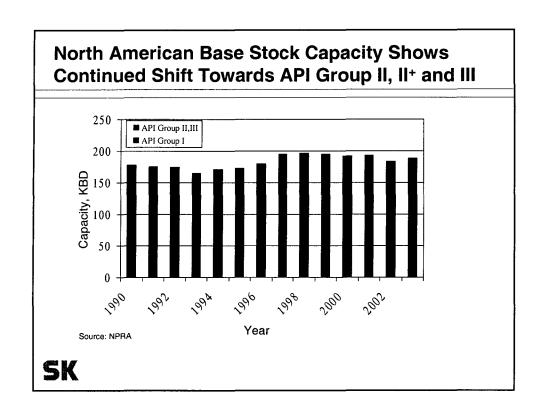
• Introduction of SAE 5W-20 with ILSAC GF-3 and SAE 0W-20 growth with ILSAC GF-4 reconfirms industry commitment to lower SAE grades

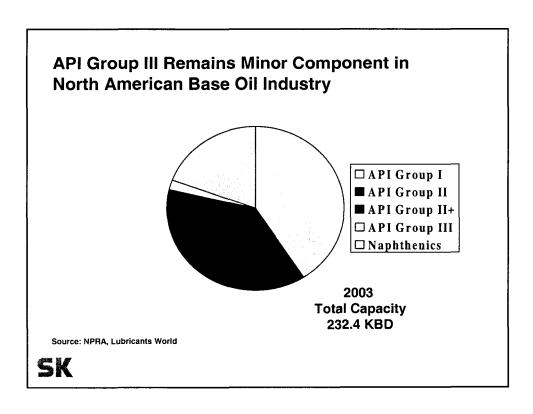


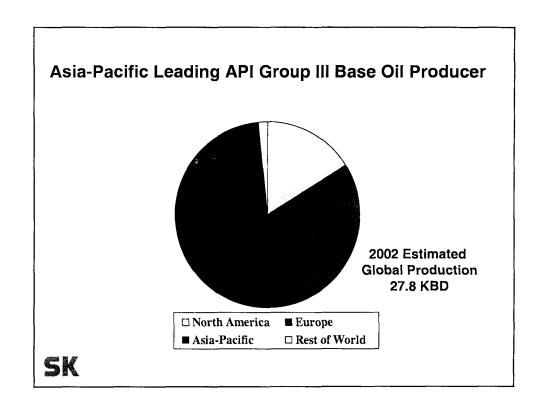
Gasoline Engine Oil in Korea/Japan

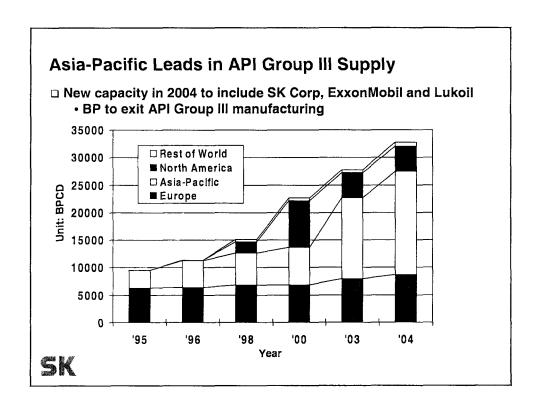

1. Current Market Features




- o SL/GF-3 dominates
- o Top tier market is growing
 - ex. 5W40 with ACEA and European OEMs
- o SJ, SH are mainly OEM's factory fill oil




- o SL/GF-3 dominates
- o Fuel Economy oil grade (5W20) is emerging
- o 10W30 grade dominates (>60%)
- o Lower grade (below SH) is still existing



VHVI Base Oils - Future □ VHVI based Lubricants will grow in Market Share □ Automotive Applications appear to be in a 'Real' Growth Phase - ILSAC GF-3: Noack Volatility - 15% max. (GF-2: 22%) - ILSAC GF-4: Enhanced Performance and Retention of Fuel Economy □ Severe Applications will be benefit from VHVI base oils □ Replacement for PAOs - Cost Effective than PAOs in achieving Synthetic Performance

VHVI Base Oils - Today & Tomorrow

- ☐ Today
 - Compatible to PAO Quality, but limited Viscosity Grades & Applications
 - Better Economics than PAO
 - Niche Market

□ Tomorrow

- API Group I Base Oil will maintain as Mainline Product
- VHVI Base Oils demand will be increased with API Group II Base Oil
- Big potential Supply Capability of VHVI Base Oils
- PAO will maintain its merit as Synthetic

논 문 발 표

Session I(A) 마찰·마멸

튜브진동 시 판스프링 지지부의 미끄럼변위와 마멸 분석	41
경질탄소 필름과 대면물질 경도변화에 대한 트라이볼로지 특성	50
혼합 self-assembled monolayer(SAM)의 마이크로/나노응착 및 마찰특성	56
Zr 합금에서 Nb과 Sn의 함량에 따른 마멸툑성 분석	64
나노다이아몬드가 첨가된 초고분자량 폴리에틸렌의 마모특성에 관한 연구	72
Tribological properties of sputtered boron carbide coating and the effect of CH ₄ reactive	
component of processing gas	78
미끄럼 접촉을 하는 탄소강의 경도차 조합에 따른 마모특성변화 연구	85
내저온열화 특성을 갖는 지르코니아/알루미나 복합세라믹의 마멸평가	91