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Self-tuning Robust Regression Estimation

YouSung Park®, DongHee Lee!

Abstract

We introduce a new robust regression estimator, self-tuning regression estimator. Various
robust estimators have been developed with discovery for theories and applications since Huber
introduced M-estimator at 1960’s. We start by announcing various robust estimators and their
properties, including their advantages and disadvantages, and furthermore, new estimator
overcomes drawbacks of other robust regression estimators, such as ineffective computation,
on preserving robustness properties.
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1 Introduction

One of the most important statistical tools is a linear regression analysis for many fields. Nearly
all regression analysis relies on the method of least squares for estimation of the parameters in
the model. A problem that we often encountered in the application of regression is the presence
of an outlier or outliers in the data. Outliers can be generated by from a simple operational
mistake to including small sample from a different population, and they make serious effects of
statistical inference. Even one outlying observation can destroy least squares estimation, resulting
in parameter estimates that do not provide useful information for the majority of the data.

Robust regression analysis have been developed as an improvement to least squares estimation
in the presence of outliers and to provide us information about what a valid observation is and
whether this should be thrown. The primary purpose of robust regression analysis is to fit a model
which represent the information in the majority of the data.

The properties of efficiency, breakdown point, and bounded influence are used to define the

measure of robust technique performance in a theoretical sense. Efficiency can tell us how well a
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robust technique performs relative to least squares on clean data {(without outliers). High efficiency
is mostly desired on estimation. The breakdown point is a measure for stability of the estimator
when the sample contains a large fraction of outliers(Hampel,1974; Donoho and Huber,1983). It
gives the minimum fraction of outliers which may produce an infinite bias. It is referred as the
measure of global robustness in this sense.

For example, least squares has a breakdwn point of 1/n. This indicates that only one outlier can
make the estimates useless. In contrast, some robust regression estimates attaches approximately
50% breakdown point, and it is called a high breakdown point in this case.

Lastly, bounded influence is designed to counter the tendency of least squares to allow exterior
X-space or high leverage points to exhibit greater influence, which can be especially important if
these points are outliers.

Robust regression estimators were first introduced by Huber(1973,1981), and it is well known
as M-regression estimator. But this estimator is not robust in the view point that it has the same
breakdown point as least squares and does not have the bounded influence because it does not take
into account the leverage of the observations to down hill in its equations(Hampel et al., 1986).

A generalization of M-regression estimator is given by the generalized M-estimator (GM-
estimator). They were suggested in order to maintain efficiency of M-estimator, and to limit
the influence of the leverage point simultaneously(Hampel et al., 1986). But Maronna, Busto and
Yohai(1979) showed that GM-estimator has breakdown point depending on the dimension of in-
dependent variables and it is at most 1/(p + 1) where p is the number of independent variables in
the regression model, including the intercept if present.

Rousseeuw(1984) introduced the least median of squares (LMS) and the least trimmed squares
(LTS). These estimators minimize the median and the trimmed mean of the squared residu-
als respectively. They are first suggested as high breakdown point estimation with regression
equivariance. As following, S-estimator(Rousseeuw and Leroy 1987) was suggested as robust es-
timator with high breakdown point and more efficiency than other high breakdown estimators.
MM-estimator(Yohai,1987) and one-step GM estimator(Simpson et al.,1992; Coakley and Hetta-
manspergerare,1993) are multistage estimators with desirable properties, efficiency, high break-
down point and bounded influence while other high breakdown point estimators do not satisfy ro-
bustness at the same time. For this purpose, MM-estimator and one-step GM-estimator suggested
for simultaneous satisfaction of all or some robustness properties, like efficiency, high breakdown
point and bounded influence.

Especially, these multistage estimators have a common properties that they use a high break-
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down point estimator, such as LMS, LTS, or S-estimators, as their initial estimates for retaining
high breakdown point. But high breakdown point estimation have some drawbacks. First of
all, computing any of these estimators exactly is impractical in all but small datasets, because
they involve the combinatorial problem of determining how many cases are used. Therefore, they
are based on resampling techniques and their solutions are determined randomly(Rousseeuw and
Leroy, 1987), and then they can be even inconsistent(Hawkins and Olive, 2002). Second problem
is their lower convergence rate. For example, LMS has the low convergence rate as n~1/3, It makes
direct effect of efficiency of estimates, and, moreover, multistage estimators are not free from it.(He
and Portnoy,1992) Third, they do not have bounded influence for X-space or high leverage points
although they limitedly affected from response outlying observations.

We introduce a new class of robust regression estimators, self-tuning estimator(STE). It ba-
sically inherits spirits of S-estimator and GM-estimator. Moreover, its goal is to construct the
estimation method not to depend on data size without loss of appropriate robustness. In Section
2, we suggest computing algorithm for self-tuning regression estimator and introduce some prop-
erties revealed until now. In Section 3, we refer to the result of investigation through Monte Carlo

study meanwhile and simply allude to further research.

2 Computing algorithm
Consider the multiple regression model,
yj=ﬂ0+ﬂ1x1j+"'+ﬂpl‘m~+ﬁj, i=12,---,n (1)

Let gy, and 4z, be the sample means of y;’s based on respective observations with z;; > ;

and zy; < Z; for each i = 1,2,--- ,p where Z; is the sample mean of the ith independent variable.
step 1 For the ith independent variable, partition n observations into four sets;

{(x5,95),5 = 1,2, ,n} = {(x5,y;), Ti 2 Ti and y; > Ju,}
U {(x5,95), 245 2 Ti and'y; < Y, }
U{(xj,¥5), 245 < Zi and y; > o, }
U{(x;,¥;),zi < Ti and y; < Fu, }

Let O = U!_,0; where O; is the all possible non-empty subsets of the four partitions by the

ith independent variable and denote K be the number of sets in @ where each set includes
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at least p + 1 observations to have the OLS for 8 = {6,061, -- ,Bp}. We denote these K

sets of observations by Ey, Ey, -, Ek.

step 2 Obtain OLS estimate b{ from observations in Ej and apply b} to n observations to calculate
standardized residuals 7;(b}) = %t%’%z where 7;(b)) = y; — x}b), j = 1,2,---,n and
k
s(b?) = (0.6745)'median(|r;(b?)|). Then we calculate
b' = arg min > [Irs (BRI = I (B)I] 2)

Ir;(bD)I<er,ri(b)|<ca

where ¢ is a cut-off value, £k = 1,2, -+ , K and [z]+ = max(0, z).

step 3 Calculate the preliminary STE b,srg from observations satisfying |7;(b!)| < ¢ for j =

1,2,---,n, using b! as the initial estimate.

step 4 Remove the observations with |7;(bpsTe)} > ¢1 for j = 1,2,--- ,n. We recall these observa-

tions temporary outliers.

step 5 Repeat stepl - stepd until no additional outlier is detected using the remaining observations
from step4 of the previous repetition. Accordingly, the sample size n used in stepl - step4 is

adjusted in each repetition.

The estimate from step5 is our self-tuning estimate denoted by bsrg, applying bsrg whole
observations to detect the final outliers such that |7;(bsrg)| > ¢z (c1 > c2).

There are two main reasons for stepl. First reason is that, by partitioning observations by
the sample mean of independent variable, and then the sample mean of dependent variable, we
can isolate bad leverage points. Because our self-tuning estimate uses OLS estimates as an initial
estimate, the STE may depends on outliers since the OLS as an initial estimate depends on
outliers. (This is one of weak points of our previous STE which were indicated by the referees
for our previous paper. This is actually the concept of high breakdown estimation). Thus, we
need to an OLS estimate which is less affected on outliers. Step2 is for this purpose. The second
reason is as follows with step2. When an Ej contains outlier or outliers, the OLS fitted on I
should be distorted and thus most of the resulting residuals calculated from all n observations
should be large . Therefore, the corresponding s(bl) = (0.6745)"'median(|r;(b2)}) is large, and
hence 3\, b0)1<cy ri(b0)1<c1 [Iri(bR)[ = |r;(bR)|] . should be large. This means that the OLS on
E} has low possibility to be an initial estimate. Although, from step2, we have an OLS which is
less affected on outliers, the OLS may be affected on outliers when they are scattered moderately

far from the majority of y over all range of z’s because the partitions in stepl operate well for
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outliers which are far from the majority of z and y. Thus, we use step3. When outliers reside
in symmetric positions of the true linear line, step3 may work for outliers which are farther from
the true line. Thus we need repetition to detect outliers in the opposite position. Step4 is for
this. Stepl - step4 can be the procedure for data cleaning and for obtaining an initial estimate
not depending on outliers for our final STE in step5. In our simulation study, we use ¢; = 4 and

C2=3.

3 Conclusion

Out purpose is to construct to estimation method not to depend on data size with appropriate
robustness simultaneously. Monte Carlo study shows that STE has high breakdown point, un-
bounded influence and high efficiency. Moreover, STE always guarantees unique solution and
consume less computing time because it does not depend on data size unlike other high breakdown
point estimators, and it does not need resampling technique for estimation.

We do not make a close and enough examination for STE yet. For example, its asymptotic

properties and robustness are not justified and do not go into details in theoretical sense.
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