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Abstract: Conventional methods investigating soil Hg 
contamination are time-consuming and expensive. A quicker 
method is developed to predict soil Hg content with convolved 
HyMap, ASTER, and TM spectra. The prediction accuracy for 
each sensor is satisfactory  and similar. It suggests that low 
spectral resolution is not a limitation for predicting soil Hg 
content. Correlation analysis reveals  that Hg -sorption by iron 
oxides is the mechanism by which to predict spectrally 
featureless Hg with reflectance spectra. Future study with field 
measurements and remote sensing data is recommended. 
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1. Introduction 
 
In the last few decades, large amounts of Hg have 

been deposited in the periurban soils of Nanjing area. 
High concentrations of Hg are very toxic to biological 
lives. Now there is an increasing need to investigate soil 
Hg contamination. Conventional methods investigating 
Hg contamination based on raster sampling and 
chemistry analysis are time-consuming and expensive.  

The remote-sensing approach, which can allow for 
synoptic and repetitive coverage of large areas in a 
cost-effective way, has become an attractive tool for 
assessing and mapping soil physical and biogeochemical 
properties for environmental purposes. Optical remote 
sensing techniques measure soil reflectance spectra 
within the VNIR-SWIR region (0.38-2.5 μ m) to 
characterize soils and monitor their changes. Laboratory 
studies have shown successful application of soil 
reflectance for predicting soil constituents  which have 
spectral features like iron oxides [1], organic matter[2] and 
clays[3]. Moreover, recent studies showed that, though 
soil heavy metals  at low concentration levels do not have 
spectral features, the elevated heavy metals input by 
anthropogenic activities are absorbed by iron oxides, 
organic matter and clays[4], and via inter-correlation with 
these soil constituents  that are spectrally active, heavy 
metal concentrations can be predicted[5,6].  

An important requirement for a successful application 
of remote sensing in mapping contaminated land is a 
detailed spatial and spectral resolution of the images [7]. 
Imaging spectrometers fulfill these requirements. Until 
now examples of the use of imaging spectroscopy are 
available for the mapping of contaminated soils in 
abandoned mines [8]. To the authors’ knowledge, research 

on investigating Hg contamination for agricultural soils 
with image spectrometers has not been reported.  

Comparing with hyperspectral images, the data from 
spaceborne multispectral sensors are cost-effective and 
convenient to acquire. Initially laboratory reflectance 
spectra of 120 soil samples from Nanjing periurban area 
are spectrally simulated into the HyMap, ASTER, and 
TM bands allocated within the VNIR-SWIR region. The 
objectives of this study are: 1) to predict soil Hg content 
by simulated spectra with statistical methods and 2) to 
explore the influence of spectra resolution on the 
prediction accuracy. A  successful prediction based on 
reflectance spectra can open the possibilities for a rapid 
remote mapping of soil Hg contamination levels. 

 
2. Materials and methods  

 

2.1 Soil Sampling and Chemical Analyses 
One hundred and twenty soil samples were collected 

from surface soil along the designated locations in 
Nanjing periurban area. The samples were air-dried and 
sieved through a 2 mm- polyethylene sieve. They were 
then ground until fine particles (<200 mm) were 
obtained. Each sample was split into two subsamples. 
One was used for spectral measurements, the other 
analyzed for Hg content. Hg was determined using an 
acid digestion method[9] and measured by Atomic 
Absorption Spectrometry (AAS).  
2.2 Spectral Measurements and Simulation 

Reflectance spectra were measured in a Lambda 900 
spectrophotometer with 2nm sampling intervals between 
3.78 and 2.498μm. The sample preparation followed the 
procedure from Balsam[10]. 

Reflectance values of HyMap, ASTER, and TM 
spectral bands were simulated using the full width half 
maximu m (FWHM) values for their respective filter 
functions.  
2.3 Model Construction and Validation 

Firstly an exploratory analysis is carried out for all 
120 samples to detect outliers. The samples which 
decrease the prediction accuracy can be defined as 
outliers and hence will be left out. Then the remaining 
samples are split into a calibration set and a test set. In 
order to obtain  the optimum performance, several 
models  are tried using the calibration set, such as Linear, 
Exponential, Quadratic, and Logarithmic. The model that 
gives the highest regression coefficient (R) is chosen as  
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Table 1. The optimal equations of the calibration sets for the 
three sensors for predicting Hg 

 R F Sigf E0 E1 
HyMap51 -0.661** 64.37 0.000 20.044 -0.120 
ASTER3 -0.645** 59.20 0.000 11.115 -0.119 
TM4 -0.645** 59.11 0.000 12.049 -0.120 
Note: The optimal regression models for all the three sensors are 
Exponential equations 
**: Correlation is significant at the 0.01 level 

 
final model, and to validate the model, F-test is added. 

Moreover, in order to explore further the mechanism 
by which to predict Hg, the relationship between Hg 
content and spectral absorption depth at 0.49μm, which 
is attributable to ferric electronic transition of goethite, is 
examined. Goethite has much higher surface areas and 
thus can adsorb Hg. The absorption depth is measured on 
continuum-removed spectra [11].  
 

3. Results 
 
Fig. 1 presents the continuum-removed spectra of 

sample JNX-1 and goethite. The presence of iron results 
in absorption at wavelengths in the 0.4 to 1.3μm region, 
While the absorption features are broad and weak. By 
continuum removal, the small absorption features are 
enhanced. Doublet absorption feature near 0.49μm is 
weaker and broader than pure goethite because of the 
soil matrix effect.  

Variations of the reflectance are negatively correlated 
with Hg content. However, the samples with low Hg 
content have large deviation. In order to obtain optimal 
prediction, fifteen samples with Hg concentrations lower 
than 0.05ppm are left out. The remaining dataset of 105 
samples is split into a calibration set consisting of 85 
samples and a test set consisting of 20 samples.  

Table 1 shows the optimal equations for predicting Hg. 
Hymap51, ASTER3 and TM4 are the optimal bands for 
each sensor respectively, and exponential models are the 
optimal regression models for all sensors. The R value 
for HyMap51 is the highest. However, it is not much 
different from that of ASTER3 and TM4. It suggests that 
spectral resolution is not necessarily a limitation for 
predicting soil Hg content with empirical methods.  

The final models are validated using the test sets. 
Table 2 presents the regression line (Cpredicted =a + b 
Cmeasured ) parameters of the validation stage along with 
their statistical significance. The low b values are due to 
sample JNX-129, which has the highest Hg content (15  

 
Table 2. The regression line parameters of the test sets for the 

three sensors in the validation stage 
 R F Sigf a b 

HyMap51 0.641** 12.52 0.002 0.256 0.333 
ASTER3 0.629** 11.78 0.003 0.259 0.311 
TM4 0.628** 11.71 0.003 0.260 0.313 

 
times higher than background value) and shows an 
underestimation of the predicted value. An explanation 
for this sample is that it originates from point source 
pollution instead of diffuse pollution. Also, it can be seen 
that the R values for all sensors are similar, which 
strengthens the finding that the prediction abilities for all 
sensors are similar. So considering the cost, multispectral 
spaceborne images (e.g. TM) can be good choices to 
investigate soil Hg contamination levels. 

Fig. 2 presents the boundary of the Hg pollution index, 
which is  calculated as the quotient between the predicted 
/measured Hg concentration and its background value. 
When the samples fall within the boundaries of a certain 
class depicted by the box on the diagonal then they are 
classified right. Prediction for the cleanness and low 
contamination samples is satisfactory. Sample JNX-129 
shows an underclass of the predicted value but it is not 
representative for the set we want to investigate. 

 
4. Discussion 

 
For a better understanding of the functioning of the 

prediction model, the relationship between Hg content 
and the spectral feature depth at 0.49μm is examined. 
Our result shows that Hg content is positively correlated 
with the absorption depth (R**= 0.52). However, from 
Table 1 it can be clearly seen that Hg content is 
negatively correlated with soil reflectance, and the 
highest correlation is at 1.14 μ m HyMap band 
(HyMap51). 

These findings indicate the Hg-sorption by soil iron 
oxides. Soils of the research area, mainly yellow brown 
soil, contain large amounts of goethite. The yellowish 
color is attributable to the iron absorption near 1 µm of 
the goethite. Goethite has strong adsorption capability[12]. 
For example Oliveira found that the higher levels of Hg 
were associated with higher Fe concentrations [13]. Hg 
content becomes higher as goethite content increases, 
and accordingly the spectral absorption depth at 0.49μm 
becomes deeper. Therefore, Hg content is positively 
correlated with the absorption depth. However, the soil 

Fig. 1. The original and continuum-removed spectra of sample 
JNX-1, also presents the continuum-removed spectrum of Goethite
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reflectance values decrease because of iron absorption. 
So Hg content is negatively correlated with soil 
reflectance. Other iron oxides can also adsorb Hg. The 
absorption feature around 1.14µm is caused by iron in 
ferric or ferrous form. It reflects the presence of all the 
forms of iron oxides, so at which the soil reflectance is 
the strongest negatively correlated with Hg content. 

The increasing Hg by anthropogenic input and iron 
oxides are inter-correlated. However, it is notable that 
the levels of Hg in unpolluted soils  are naturally 
accumulated from rocks through pedogenesis , and most 
of them are not absorbed by iron oxides but exist in the 
crystal lattice of the minerals. Therefore, the correlation 
between the low levels of Hg and iron oxides is weak. It 
explains why the prediction accuracy becomes higher by 
removing samples with Hg concentration far lower than 
background value. 

Hg is hard to transfer, and tends to be concentrated in 
surface soils. Hence, future applications will focus on 
mapping Hg contamination levels through remote 
sensing in a cost-effective way. However, the predicting 
with remote sensing will be faced with several other 
problems, such as soil roughness, sun zenith, soil 
moisture, atmospheric attenuation, low signal-to-noise 
ratio (SNR), pixel mixing, etc.  Future study will be 
carried out to collect spectra directly in the field or with 
remote sensing instruments in winter or early spring, 
when vegetation still hasn’t burgeoned; soil moisture is 
low; and soil hasn’t been furrowed. It should be noted 
that the results of this  study are only valid for the soil 
types represented in the investigated region. Further 
studies are required on other soil types and heavy metals . 

 
5. Conclusions  

 
This study shows that the simulated soil reflectance 

for HyMap, ASTER, and TM bands is a promising 
method for assessing elevated Hg concentration. 
Comparing with expensive hyperspectral images, 

spaceborne multispectral sensors which are relatively 
cost-effective may be good choices to investigate soil Hg 
contamination levels. Correlation analysis reveals that 
the inter-correlation between Hg and iron oxides is the 
mechanism by which to predict spectrally featureless Hg. 
Future study with real remote sensing data and field 
measurements is strongly recommended. 
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Fig. 2. The predicted by HyMap 51 versus measured values for both 
the calibration(○) and test (△)set, and also presents the boundary of 
the Hg pollution index (UC=uncontaminated; LC=Low contamination; 
MC= Moderate contamination; HC= High contamination) 
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