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Abstract: The aim of this study is to  assess the integrated use 
of different features  extracted from spaceborne interferometric 
synthetic aperture radar (InSAR) data and optical data for land 
cover classification. Special attention is given to the discrimi-
natory characteristics of the features derived from the multi-
source data sets. For the evaluation of the features , the statisti-
cal maximum likelihood decision rule and neural network clas-
sification are used and the results are compared. The perform-
ance of each method was evaluated by measuring the overall 
accuracy. In all cases, the performance of the first method was 
better than the performance of the latter one. Overall, the re-
search indicated that multisource data sets containing different 
information about backscattering and reflecting properties of 
the selected classes of objects can significantly improve the 
classification of land cover types . 
Keywords: InSAR data, multisource data, features, classifica-
tion. 
 
 

1. Introduction 
 

Multisource image classifications are of increasing in-
terest in the present development of digital image proc-
essing. In the multisource classification, data from dif-
ferent sources such as optical and synthetic aperture ra-
dar (SAR) images as well as other thematic features are 
integrated to improve the classification accuracy. Remote 
sensing (RS) images taken in the optical range of the 
electro-magnetic spectrum (EMS) contain information 
on the reflective and emissive characteristics of the Earth 
surface features, while the SAR (intensity and coher-
ence) images contain information on the surface rough-
ness, texture, dielectric properties and change of the state 
of natural and man-made objects. Thematic features con-
tain information about clear differentiation among differ-
ent classes of objects. It is evident that a combined use of 
these data sets will have a number of advantages , be-
cause a specific object or class which is not seen on one 
image might be seen on the other images because of the 
complimentary information provided by different 
sources [1]. 

At present, there are a number of techniques for mult i-
source image classification. In RS applications, the most 
widely used multisource classification techniques are 
statistical methods, neural networks and Dempster-
Shafer theory of evidence [9]. A number of authors have 
assessed the potential of multisource images for dis-
crimination of different land cover types using a method 
related to one of the above mentioned groups [2,5,6]. 
However, most authors integrated only optical and SAR 
intensity images for multisource classification. In recent 
years, InSAR images have been available for the users of 
RS products. Unlike, the traditional single band SAR 

data that are used for derivation of only intensity images, 
the InSAR data can be used for the derivation of coher-
ence as well as multitemporal intensity images. These 
derived images or their enhanced features combined with 
other data sets can be used for different classifications to 
increase the performance of the applied decision rules. 

The aim of this study is to assess the integrated use of 
different features extracted from spaceborne InSAR data 
and optical data for land cover discrimination. The initial 
multisource data set consisted of (interferometric) ERS-
1/2 tandem pass SAR images and, visible and near infra-
red bands of ASTER data. In the feature extraction proc-
ess, coherence image and other features have been de-
rived from the InSAR data. For the classification, the 
statistical maximum likelihood decision rule (MLDR) 
and neural network (NN) method have been selected and 
the performance of each method was evaluated by meas-
uring the overall accuracy. 
 

2. Test Area and Data Sources 
 

As a test site Ulaanbaatar, the capital city of Mongolia 
has been selected. The selected area is about 
18kmx15km and is characterized by such classes as ur-
ban, forest, soil and water. 

The data used consisted of ERS-1/2 tandem pass SAR 
single look complex (SLC) images acquired on 10 and 
11 October 1997 with a spatial resolution of 25m, JERS-
1 SAR intensity image of April 1997 with a spatial reso-
lution of 18m and bands 1,2 and 3N of ASTER data of 
May 2001 with a spatial resolution of 15m. In addition, 
for ground truth checking a topographic map of 1984, 
scale 1:50,000 and a general urban planning map were 
available. 
 

3. Feature Extraction 
 

To extract different features from the ERS-1/2 tandem 
pass SAR SLC images, the below techniques have been 
applied. 
 
1) Derivation of the InSAR Coherence and Ampl i-
tude Images 
 

The InSAR coherence images are generated by using 
both the amplitude and phase information from a pair of 
SLC images. The coherence is a measure of the variance 
of the phase difference of the imaged surface in the time 
between the two SAR data acquisitions. The coherence 
values range between 0 and 1. If some land surface 
changes  had occurred in a target area between the two 



image acquisition periods, then coherence is low and if 
no changes had occurred, then the coherence is high. In 
general, the coherence over a dense forest and shrub will 
be the lowest, while for the bare soil, the coherence will 
be the highest. 

The coherence and other amplitude images have been 
derived as follows: 
1. Initially, 200 ground control points (GCP) regu-

larly distributed over the images were  automatically 
defined using the satellite orbit parameters and the 
two SLC images were co-registered with 0.1pixe
l accuracy. Then, a course registration followed by 
a fine registration was performed. 

2. Coherence has  been  calculated using 10x2 size  
window and the coherence image was generated. 

3. From the complex images, amplitude images were 
generated. 

4. The preliminary SLC images were converted from 
the slant range onto a flat ellipsoid surface. 

5. T h e  t r u e  s i z e  ( 5800x5800 )  
SAR images were generated using image undersamp
ling applying 3x3 size low pass filter.  

 
2) Derivation of the Texture Features 

 
To derive texture features occurrence and co-

occurrence measures were applied to the coherence and 
average amplitude images of ERS-1/2 and JERS-1 inten-
sity image. The occurrence measures use the number of 
occurrences of each grey level within the processing 
window for the texture calculations, while the co-
occurrence measures use a grey-tone spatial dependence 
matrix to calculate texture values. By applying these 
measures, initially 30 features have been obtained, but 
after thorough checking of each individual feature only 7 
features including the results of the mean and data range 
filters applied to all three images, and the result of vari-
ance filter applied to the JERS-1 image were selected. 
Detailed descriptions of the occurrence and co-
occurrence measures as well as the texture filters are 
given in [3,4]. 

 
3) Principal Components (PC) and Ratio Images 

 
To reduce the dimensionality of the dataset, the prin-

cipal component analysis (PCA,[9]) has been performed 
to the extracted SAR features. For the PCA 10 features, 
including the ERS-1/2 coherence and average amplitude 
images, JERS-1 intensity image and 7 texture features 
have been used. The PCA has shown that the first 3PCs 
contained 99.6% (PC1=99.2%, PC2=0.25%, 
PC3=0.15%) of the total variance. Therefore, the first 
3PCs have been selected for further analysis  and the re-
maining PCs were rejected. 

A ratio image has been created by taking the ratio of 
ERS-1 and ERS-2 amplitude images, multiplied by a 
compensation factor of 90. 
 
 

4. Geometric Registration of the Multisensor 
Images 

 
As the aim of this study was to demonstrate the separa-

tion of the chosen classes in the selected features , the im-
ages were not registered to map coordinates, instead, they 
were registered to the coordinates of the ASTER data. The 
GCPs have been selected on clearly delineated crossings of 
roads, streets and other clear sites comparing the locations 
of the selected points with other information such as topog-
raphic map and urban planning map. In total 24 more 
regularly distributed points were selected. For the trans-
formation, a second order transformation and nearest 
neighbour resampling approach have been applied.  The 
related root mean square (RMS) errors were 0.98pixel for 
the ERS products and 0.96pixel for the JERS-1 image, 
respectively. 
 

5. Classification of the Features 
 
Initially, from the multisource images, 2-3 regions of 
interest (ROI) representing the four selected classes such 
as urban, forest, soil and water have been selected using 
a polygon-based approach. Then, training samples were 
selected on the basis of these ROIs. The separability of 
the training signatures was firstly checked on the feature 
space images and then evaluated using transformed di-
vergence (TD) [8]. Then the samples which demo n-
strated the greatest separability were chosen to form the 
final signatures. For the classification, the following fea-
ture combinations have been used: 
 
1. Coh, (ERS1+ERS2)/2, ERS1/ ERS2, 
2. (ERS1+ ERS2)/2, ERS1/ ERS2, JERS1, 
3. Coh, (ERS1+ ERS2)/2, JERS1, 
4. 10 features, including Coh, (ERS1+ERS2)/2, JERS-

1 and 7 texture features, 
5. First 3PCs, 
6. ASTER (bands 1,2 and 3N), 
7. Coh, (ERS1+ERS2)/2, JERS1, ASTER (bands 1,2 

and 3N), 
8. Speckle suppressed (Coh, (ERS1+ERS2)/2, JERS

1), ASTER (bands 1,2 and 3N). 
 

For each of these feature combinations, MLDR and 
NN methods have been applied. For the MLDR, a statis-
tical maximum likelihood classification assuming the 
equal class prior probabilities, while for the NN method, 
standard backpropagation using a logistic function for 
the activation and 2 hidden layers, have been used. De-
tailed descriptions of these methods are given in [7,8]. 

For the accuracy assessment of the final classification 
results, the overall perfo rmance has been used. As 
ground truth information, for each class several regions 
containing the purest pixels have been selected. In all 
cases, the performance of the MLDR was better than the 
performance of the NN method. The overall classifica-
tion accuracies of the selected classes in the selected 
features are shown in table 1. As seen from table 1, the 



performance of the classifications using the ERS-1/2 
amplitude and JERS-1 intensity combinations was the 
lowest, while the performances of the Coh, 
(ERS1+ERS2)/2, ERS1/ ERS2 and Coh, (ERS1+ 
ERS2)/2, JERS1 combinations were similar. The use of 
10 features significantly improves the performance of the 
MLDR. This was most probably related with the fact that 
the texture filters improved spatial homogeneity of the 
primary features. As a result, decisions made for selec-
tion of the correct pixels in the decision boundaries of 
multidimensional feature space were improved. The per-
formance of the classification using 3PCs was similar to 
the performance of the 10 features. Surely, it was due to 
the reason that these 3PCs contained 99.6% of the total 
data variance. As seen from table 1, the results of the 
classifications using ASTER data are higher than all 
SAR combinations. This means that the selected classes 
are statistically more separable in the optical range of the 
EMS than in the microwave range. 

 
Table 1. The overall classification accuracy of the classified 

features. 
 

Feature combinations 
Overall 

accuracy of 

MLDR (%) 

Overall 
accuracy of 

NN (%) 
Coh, (ERS1+ERS2)/2, ERS1/ ERS2 60.14 53.12 
(ERS1+ ERS2)/2, ERS1/ ERS2, JERS1 56.65 45.98 
Coh, (ERS1+ ERS2)/2, JERS1 62.92 54.25 
10 features 76.02 59.06 
First 3PCs 74.67 57.19 
ASTER 82.58 78.05 
Coh, (ERS1+ERS2)/2, JERS1, ASTER 90.79 83.26 
Speckle suppressed SAR, ASTER 94.02 85.93 

 
As seen from table 1, the results of the multisource 

classifications using both MLDR and NN are higher than 
the results of any other combinations. This means that 
the multisource data sets containing different informa-
tion about backscattering and reflecting properties of the 
selected classes of objects can significantly improve the 
classification of land cover types. Usually, before apply-
ing a classification decision rule, the speckle noise of the 
SAR images are reduced. The reduction of the speckle 
increases the spatial homogeneity of the classes  which in 
turn improves the classification accuracy. In this study, 
to demonstrate the difference between the speckle sup-
pressed and unsuppressed features , the combination of 
Coh, (ERS1+ERS2)/2, JERS1 features has been used. 
The speckle of the selected features have been sup-
pressed by the use of a 5x5 size gammamap filter [4]. 
The speckle suppressed SAR features combined with 
ASTER data were classified using the same set of train-
ing samples. As it was seen from the result of the MLDR, 
some improvements were made in separation of the 
classes and confusion matrix indicated an overall accu-
racy of 94.02%. 

6. Conclusions  
 

The aim of this study was to extract reliable features 
from SAR data sets  and perform multisource classifica-
tion combining the extracted features with an optical 

image. For this end, ERS-1/2 tandem pass SAR data sets, 
JERS-1 SAR image and visible and near infrared bands 
of ASTER data were used. 

For the classification of the individual features as well 
as the integrated data sets, the statistical MLDR and NN 
methods were used and the results were compared by 
measuring the overall accuracy. In all cases, the per-
formance of the MLDR was better than the performance 
of the NN method. 

Overall, the study indicated that multisource data sets 
that contain different information about backscattering 
and reflecting properties of the selected classes of ob-
jects can significantly improve the classification of land 
cover types. Furthermore, to increase the classification 
accuracy, these integrated data sets can be combined 
with other ancillary data or thematic features and used 
for the classification decision rules. 
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