
Position Information Storage System based on RDBMS

In-Sung Jang, Dae-Soo Cho, Jong-Hyun Park

Spatial Information Technical Center, ETRI
161 Gajeong-dong Yuseong-gu, Daejeon 305-350, Korea

{e4dol2, junest, jhp}@etri.re.kr

Abstract: Recently, owing to the rapid progress of
Telecommunication technology, the increase of wireless
internet’s subscriber and diffusion of wireless device, LBS
(Location Based Services) which take advantage of user's
location information and receive information in concerning with
user’s location to be essential services. Location Based Services
are related the moving objects which change their locations
through time. Therefore, to provide location-based services
efficiently, it is required that an efficient system which could
acquire, store, and query the large number of locations. In this
paper, we design management system to insert and search a huge
number of Moving Object based on Legacy Relational Database.

Keywords: LBS, MOVING OBJECT, STORAGE.

1. Introduction

These days, owing to the rapid progress of Telecom-
munication technology, diffusion of wireless internet and
performance elevation of mobile device, Location-based
Services that are based on user's location information
have been useful service. Although there is some differ-
ence in definition of LBS, it commonly known as that it
employ accurate, real-time positioning to connect users
to nearby points of interest, advise them of current con-
ditions such as traffic and weather, or provide routing
and tracking information - all via wireless devices (ex :
portable phone, PDA, notebook PC and etc)[1]

To provide Location-Based Service that takes advan-
tage of feature that is mobility to user, we need Moving
Object Management System(MOMS) [2, 3, 4] that can
efficiently manage user's location information that be
changed continuously.

The rest of this paper is organized as follows. In sec-
tion 2, we introduce related work with moving objects.
In section 3, we describe system architecture of MOMS
(Moving Object Management System). In section 4, we
shall show two storage module, which simple location
storage module and distributed location storage module
to insert and search efficiently location data in large
amount to legacy database. Lastly, in section 5 we offer
conclusions.

2. Related Works

Moving objects are that their state in space changes

over time. As computing power and technology grows,
new advanced applications manage moving objects, such
as land parcel, roads, taxis, buses, fishing boats, air

planes, cars, and cellular phone users, etc. During last a
decade, research about spatiotemporal databases has
been a active research field.

Guting have developed a data type oriented approach
for moving objects[5]. The idea is to consider the two
major abstractions moving point and moving region as
abstract data types like Fig1.

The group of Wolfson has proposed a concept of mov-
ing objects databases that is complementary to Guting[6].
Whereas Guting’s approach of modeling describes
movement in the past, hence the complete history of
moving objects, their focus is on capturing the current
movement of entities, e.g. vehicles, and their anticipated
locations in the near future. The basic idea is to store in a
database not the actual location of an moving object,
which would need to be updated frequently, but instead a
motion vector describing location, velocity and direction
for a recent instant of time. As long as the predicted po-
sition based on the motion vector does not deviate from
the actual position more than some threshold, no update
to the database is necessary.

Fig. 1. Moving Object.

3. Moving Object Management System

In this section, we describe Moving Object Manage-
ment System (MOMS).

MOMS consists of three major components, which are
Query Processor Component, Storage Component, Index
Component like Figure 2. And related modules are
gateway and Application. Through various location ac-
quisition strategies, Gateway acquires current location of
moving object. It is gotten by network based moving
object, handset-based object such as GPS from SKT,
KTF and LGT. In this paper, we use location informa-
tion of moving object generated by GSTD, City Simula-
tor for test

Moving Objects

Moving Points Moving Region

typhoon/cancer

/red tide/storm

In brief, the function of each component is same as
following. Location Query Component is that executes
query based on model of moving object and its operator.
The Index Component maintains two indexes at the same
time. One is current location index, and the other is past
location index. Current Location Index takes only cur-
rent locations of continuously moving objects into con-
sideration. Past Location Index has a special purpose of
efficient processing of a time interval queries and a tra-
jectory queries. Location Storage Component is to store
moving object reported from gateway and to search
moving object that correspond to query result of Loca-
tion Query Component. Examine particularity in Section
4.

2

Application

Query
COM

Storage
COM

2

Gateway Report

ETC CR

ZEUS Oracle Kairos SQL

Request

response

ODBC OLE DB SQL ODBC OLE DB….

….

Current

Index COM

PAST
Index COM

SDE

Fig. 2. Moving Object Management System.

4. Location Storage Module

1) Simple Storage Module

Simple Storage Module (SSM) is to do insert and
search by Query Component. For this, SSM manages
location information by using Dot NET Data Provider.
Dot NET Data Provider supports three types, which are
SQL Client, OleDB and ODBC. Therefore, if databases
supported .Net Data Provider, SSM can use by same
interface heterogeneous database system like Fig 3.

Simple

Storage

SQL

ODBC

OLE DB

.NET

Data

Provi

der

MS SQL

ZEUS

GMS

ORACLE

KAIROS

Fig. 3. .Net Data Provider

It is describes table schema at Table1 and Table2. Ta-
ble1 shows immediately update. On inserting Location
information, which consists of position coordinates, ac-
quisition time and error by Query Component. It is very

simple architecture, but it has a few defects. Above all, it
has a number of transactions. Therefore it have load in
MODB which have frequently update. Next, it is diffi-
cult to analyze trajectory of Moving Object. Next, it has
duplicate MOID.

Table 1. Example of Simple Table and Schema
Field Type Example Desc

MOID Long 0123456789 Moving Object ID

X Double 38492.32 X Coord

Y Double 56431.52 Y Coord

MOTime DateTime “2003-09-15 11:02:32” Acquired Time

MOError Float 100 Error Range

Table 2. Example of composite table and Schema

Field Type Example Desc

MOID Long 0123456789 Moving Object ID

MinX Double 31000.00 Min X Coord

MaxX Double 55000.00 Max X Coord

MinY Double 41000.00 Min Y Coord

M

B

R
MaxY Double 66431.52 Max Y Coord

FromTime DateTime “2003-09-15 11:02:32” Start Time

ToTime DateTime “2003-09-16 12:02:32” End Time

Data Length UInt 20 Location Number

Locations
BLOB or

String

0XF23F3D123CB5..

"31001,35412.9,20,"
Locations

So we design buffer to group locations of a moving

object by MOID. Data Structure of buffer is hash table
or B-tree. Key value is MOID, and Data value consists
of Length (the number of locations stored in it), MBR
(Minimum Bounding Rectangle of the locations),
From(time that first location in it is acquired) , To (time
that last location in it is acquired) and Locations which
represent a trajectory of a moving object from From
time to To time. In considering performance, we prefer
to hash Table. Fig 3 shows the schema of composite ta-
ble for this. At this, type of locations columns is BLOB
(Binary Large Object) or string, if storage system do
support BLOB type or not.

2) Distributed Storage Module

The characteristic of MODB is that heavy transac-
tions been at frequently interval. To solve this traffic, we
suggest Distributed Storage Module (DSM). DSM con-
sists of Remote Server, Server Manager and Distributed
Meta Manager. Each subcomponent is following. The
role of Server Manager(SM) maintains information of
Remote Server (RS). It has function of registering RS,
un-registering RS and checking RS statues. And it keeps

load balancing in inserting new locations. For this, SM
maintains weight table like Fig 4. In here, iw means
weight for Remote Server’s performance which is re-
flected in network traffic and CPU power.

 (RSi)DB into Rows-ninsert torequired timethe i

n
iw =

For example, Fig 4 shows each database weight and

procedure. Let’s each database weight is 4:2:1. In first
inserting, SM selects DB1 because its weight is high.
Then, SM update weight table by 3:2:1. In 2nd inserting,
it selects DB1 because its weight is high as before. In 3rd
inserting, if weight is equal, it select database using LRU
(least recently used) algorism. So SM selects DB2. Next
step is the same.

Weight Table

W1 w2 w3

4 2 1

After DB1 DB2 DB3

orgin 4 2 1

1st 3 2 1

2nd 2 2 1

3rd 2 1 1

4th 1 1 1

5th 1 1 0

6th 1 0 0

7th 0 0 0

8th 4 2 1

DB1

Weight = 4

DB2

Weight = 2

DB3

Weight = 1

Fig. 4.Weight Table

Fig 5 shows the step of inserting Moving Objects.

First, DSM must register RS into SM. Next, Client re-
quests SM to select RS. Then, SM responses to Client
which RS is selected using weight table. Next, Client
inserts location information to correspond to RS for step
3 in fig 5. Lastly, after client inserts locations into data-
base system through RS, client inserts meta-info into
DMM (Distributed Meta Manager) which controls dis-
tributed-indexing database that contains where locations
is, in distributed environment.

Fig. 5. Step of insert for Distributed Storage

And, Fig 6 shows the case of searching for query.
DMM returns list of relevant RS information to search
for query. And then, according to the RS list, Client re-
trieves RS.

Fig. 6. Step of Searching for Distributed Storage

5. Conclusions

Recently, due to an explosive increase of interest in

LBS, it is required that an efficient system which could
acquire, store, and query the large number of locations.
This case, location information varies from hour to hour.
Addition to that, it is very huge size. For this, in this pa-
per, we proposed moving objects storage system based
RDBMS. We design two types which SSM and DDM
can store and search current and past location informa-
tion effectively to a diverse set of database systems. As
future work, we should develop algorithms to enhance
the performance of location storage.

REFERENCE

[1] [1] SoftBank Research, IT Insight Strategy Report,”LBS,

Now & Future”
[2] [2] Ouri Wolfson, Bo Xu, Sam Chamberlain, and Liqin

Jiang, “Moving Objects Databases: Issues and Solutions,”
SSDBM 1998, 111-122

[3] [3] Ouri Wolfson, Sam Chamberlain, Son Dai and Liqin
Jiang, “Location Management in Moving Objects Data-
bases” WOSBIS 1997, 7-12

[4] [4] Jensen, C,S, Jensen, A. Friis-Christensen, T.B Pder-
sen, D. Pfoser, S. Saltenis, and N. Tryfona, “Location-
Based Services – A DataBase Perspective,” Proceedings
of the Eighth Scandinvian Research Conference on
Geographical Information Science, As, Norway, June 25-
27, 2001, pp 59-68.

[5] [5] Erwig, M., Guiting, R. H., Schneider, M., and Vazir-
giannis, M., “Spatio-Temporal Data Types : An Approach
to Modeling and Querying Moving Obejct in Databases,”
GeoInfomatica, Vol.3, No.3, pp.269-296, 1999.

[6] [6] Sistla, A. P., Wolfson, O., Chamber-

lain, S., and Dao, S., “Modeling and Que-
rying Moving Obejcts,” ICDE, pp.422-432,

1997.

Server Manager

Distributed Meta Manager

Remote Server

1.Registe

r
1.Registe

r
1.Registe

r

2.Server

List

3.Get Serv-

ers

4.Searc

h

Client

DB1 DB2 DB3

Server Manager

Distributed Meta Manager

Remote Server

1.Registe

r
1. Regis-

ter
1. Regis-

ter

2.Request

Server

3.Response

Server
4.Insert Loca-

tion

5.Insert Meta

Info

Client

DB1 DB2 DB3

	Return to previous screen
	Position Information Storage System based on RDBMS

