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Abstract
We consider the sensitivity of average inventory cost
rate when true values of the parameters in the EOQ
meodel are unknown over known ranges. In particular,
in the case that the valid range on the true economic
lot size are known, we provide a formula for
estimating the lot size under minimax criterion.
Moreover, to estimate the valid range, we apply the
propagation of emrors technique. Then, we present a
scheme to find a (valid) lot size, based on the
estimated range of the true lot size from the

propagation of errors technique.

1. Introduction

In the basic Economic Order Quantity
(EOQ) model, the optimal order quantity or lot size is
determined by the three parameters of average
demand rate, order (setup) cost, and mventory
holding cost. When we know the exact values of the

parameters, we can get the true (and optimal) lot size

using the well-known EOQ formula. The values of
the parameters are mainly measured in manufacturing
or accounting departments. However, they often do
not have the precise values but instead ranges for the
estimated values of the parameters: the ranges in
which they thought the true values might belong to.
Hence, in practice we unavoidably have additional
costs from the estimation errors, i.e., the difference
between the average cost rate with precise values and

the average cost rate with values of some errors.

In this situation, one methodology for
making a decision on order quantity is to deploy the
minimax criterion, likely to be used by risk-averse
managers who desire to select alternatives that avoid
the worst possible outcome. Many studies have been
done for the sensitivity analysis of average cost rate
to errors in parameter estimation (Groff and Muth,
1972, Lowe and Schwarz, 1983). In particular, Lowe
and Schwarz provided an objective function to
measure the effect of errors in parameter estimation:
the ratio of the average cost rate with imprecise

values to the average cost rate with true values,
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denoted by R((Q). Then, the policy for decision
making is to determine the lot size which minimizes

the maximum of R(Q).

However, it is questionable whether the 1ot
size generated from the policy is within the valid
range of the true size. Given a range to which the tre
optimal lot size belongs, it is trivial to check any
suggested lot size, including the lot size from the
policy, is valid or not. In case that no valid range is
provided, we need to estimate the range of lot size

using the estimated parameters of the EOQ model.

In this paper, we modify the policy to
satisfy the validity constraint on lot sizes. To this end,
a new formula for lot sizing has been derived to deal
with the case when we are given a valid range of the
true size. Moreover, in order to provide an estimate of
the valid range, we deploy the propagation of errors
technique. Illustrative examples will be presented to
show the applicability of the technique. Finally, we
present the scheme that finds a (valid) lot size, based
on the estimated range of the true lot size from the

propagation of errors technique.

2. Sensitivity of the EOQ Mode

We are given ranges of estimations for the parameters,
demand rate D, setup cost S, and inventory
holding cost 4 as follows:

D <D < D
§SS£§ 0]
h < h <k

When one requires the amount of { in each time of

order, the average cost rate, ACR((), is
ACR(Q)=(SD/ Q)+ (hQ/2).

The minimum of the average cost rate is attained at

the lot size of Q‘ =28SD/h withthe cost rate
ACR(Q")=2SDh. )

If one uses {) instead of ) due to estimation

errors, additional costs incurs. To measure how much
cost is increased, we use the ratio of the average cost

~

ratio for () to the average cost ratio for Q" :

R(G)=2RE).

ACR(Q)
Let X be the set of triples (S,D,/) which
satisfy the constraint (1). Though each parameter can
have any value in its range, but all the triples in K
might not be valid because of the interactions
between the parameters. Let @(S,D,h) be the
joint probability distribution function and #(-) be
defined only for the tiples (S,D,h)e K . Note
that the triple (S,D,A)e K is not valid if
(S,D,h)¢K .

When the given parameters are unknown, it
is natural to choose the altemative that minimizes the
worst-case outcome. This is called minimax criterion.

~

In this criterion, we find the (2 satisfying:
min max R(0 3

050 (S5,Dh)eK (Q) @)

As it is not easy to get the set K in
practice, the set K was used instead of X in the

Lowe & Schwarz’s model.
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2.1 Lowe & Schwarz’s Model

Lowe & Schwarz (1983) considered the problem

R(Q) @

min  max
050 (5,Dek

and showed that the lot sizz minimizing the

maximum risk is Q‘ =4 @_.Sl_))m . However, we
note that the order quantity é* may not be valid,
that is, no (S’, b,ﬁ) €K may exist with

28D/ h= Q*. The following example shows

"
*- .
some () isnot valid.

Example 1.

Let H' be the half space which includes all the

points above or on the hyperplane crossing the three

points (‘§: l_)s.]l)! (§, 5sﬁ): (§s Q:E) (the point

(S, 5,;!_) belongs to F{ 7). Then, the true set K

is definedas K=K ~H"*.Let V be the volume

of the hexahedron K. The variables (S,D,k)

are umiformly distributed with joint distribution
function ¢(-):

1
o(S, D,y =1 2"
0, otherwise.

if (S,D,h)e K

When the ranges on the parameters, S, [J,and A
[60,90], [100000,200000] and [7,9] ,

are

is the set
H* ={(8, D,k): 2000005 + 60 D+ 30000004 > 45000000} -

In this case,

respectively, H”*

the lot size satisfying (4) is

é* =1,618. Then, we consider the minimum and

maximum value of ( in the set K . Using an
optimization tool MATLAB (The MathWorks, Inc.
(2000)), we can get the minimum and maximum

values, 1,630 and 2,267, respectively. We note here

that the lot size Q‘ is less than the minimum value.

Hence, this lot size is not valid.

2.2 The Extended Model

Suppose that we are given a valid range for the true

lot size,
Q <0<Q, )
as well as the ranges for the parameters of (1). Since

the range (5) is valid, for each Q, Q< Q< 0,
there exists at least one triple (S, D, /%) € K such
that +2SD/h=( . We define another set of
triples K as

K:{(S,D,h):gsms 0, (S,D,h)e]?}.

In order to accommodate the validity information (5),
the problem (4) is modified to

min max R(D).
050 (5,D.h)ek (Q)

©

Note that ACR(Q)=(SD/Q)+(hQ/2), which
can be written as

A1
+ —
] Q[zﬁ

n 1{ 1 [SD
= h| —=| —=o]—
ACR(Q)=~28D {Q(\E p

=)

Since ACR(Q*)=\/2SD/1 by (2), from the
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definition of R( ,(:7) , we have

1{ 1 |SD A1 h
o )l

Then, the problem (6) is equivalent to

.5 (7 (el

™
Welet y=SD/h with feasible region

= 0'/2<y<Q*2=7. ®)

Then, we rewrite the problem (7) so that we

~

consider only the variables 0 and y:

-1/2 172 A5-1 -3/2 —1/2
25 S

From the same arguments that Lowe and Schwarz
(1983) used, we can easily show that the optimal

solution to (9) is Q;=(4y?)”4. Thus, from this

together with (8), we have é; :JQQ_ In the

following proposition, the final result is summarized.

Propositien 1. The optimal solation to problem (6)

0i=oo.

Then, the question remaining is how to get the
estimated (valid) range of (0 asin (5), which is the

is

topic of the next section.

3. Error Analysis

Consider a function y= f(X,...,X,) where each

variable X, is defined for interval (E_j s fj) (in

the EOQ model, fe) is

f(S,D,h)=+2SD/ k). Then, we would like to

get the valid range (¥, ¥) of the decision variable

». Since it is often the case that each mid value
xX; = (ﬁj +7j)/2 is thought of as the most likely

one, we set the most likely value of y as

y=f(x,.%,) Let Ay=F-y=y-y,

which is called the composite error from the

estimation errors of the variables x - To estimate the

composite error, two methods of the total differential
and propagation of errors are often used. The
composite error Ay in total differential method is
defined as

n

Ay= Z—;L-Ax ; (10)

J=1 j
In this equality, however, it is uncertain whether the
effect of each individual error is to increase or
decrease the combined error, which is a maiter of
randomness (Yoon, 1990). Hence, the range from the
total differential method is so wide that it does not

give us useful information.

In the propagation of errors technique, the

eror of ¥ is not understood in terms of the

approximate change to the distuwbances of the

variables X, as in (10), but in terms of statistical

deviation. From the statistical analyses in (Pugh and
Winslow, 1996), for the standard deviation of y, we
have
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%xn

where G ; is the standard deviation of variable Xx ;-

When we replace G,and O;’s by Ay and

Ax ;’s, we have for the composite error

fge) o

i=l J

(Ay)? =

Now, let’s see how to apply the propagation of errors
technique for the EOQ model, where the function

f(S,D,h)= V2SD/k . In the EBOQ model, for

the corresponding composite error of (11), we have

e [5o] J‘
] N;, ADI e

(12)

AQ?

In Example 2, we take a lock at how to compute the

range of a lot size.

Example 2. — Deployment of Propagation of
Errors Technique

A materials management department tries to find a lot
size for a new part. It is best estimated that yearly
demand is D= (10,000+1,000) ,
S=3$(100+10), and inventory carrying cost is
h=8(10x1). Then,by (12), AQ=39 . We
estimate (0 as f(100,10000,10) =447 . Thus,
we obtain the

ordering cost

range of (  as

(Q+AQ)=(447+39) or [408, 436].

The next example shows how well the propagation of

errors technique works as opposed to actual statistics.

Example 3. - Comparison of Propagation of
Errors Technique with Actual Statistics
The yearly demand is fixed with value of 10,000 and
the other two estimates are given as follows:
§:$350, $400, $450 with equal probabilities
and therefore a standard deviation of
123
A 1811, $13, $15 with equal probabilities and
therefore a standard deviation of 2
Each of the nine joint probabilities from the two
distributions has equal probability of 1/9. Thus, we

have the following lot sizes with equal probabilities:

2763 2542 2366
2717 2530
2882 2683

The actual mean and standard deviation of these
values are compared with those obtained by

propagation errors:

Actual Statistic Propagation of Errors
u1=2,730 0=2,717
o =223 AQ =269

As the comparison shows, estimations of propagation
of errors technique is almost close to the actual

statistics.

4. EOQ Decision with Propagation of Errors
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Since the estimated range from the propagations of S D h -~ QO O |,
[No.|

errors technique is somewhat quite accurate with the SIS| DDk h Q Q é Q QT Cr

actual range, it is worthwhile to deploy the result of {250 | 300 | 1100 | 2000 | 17 [ 23 [ 175 | 156 | 266 {124] 18] 1

propagations of errors when making decisions. Thus,

24301 901 100 1100001 4 | 9 1067 1491 671 | 94 [463] 209

under minimax criterion, our scheme for lot sizing

3P0t oe | 1oo Joooed v | v [4nfae {1342] 80 sse} o

can be described as follows:
4 | 320 | 562 | 20000 | 40000 | 70 | 100 535 | 506 | 801 |428)e88] 543

(1) Estimate the range on O, Q< Q< O, using |5 30 | 120 | 70000 J100000| 10 | 20 | 843 | 548 | 1549|5951 249| 862

6 |300015000] 20000 [ 40000 | 120 | 300 1075} 889 | 1414|749 [1389[1020)

the propagation of errors technique

716096 IOUDGOLZGOGOO T | 9 [1618]1632)2267 [13352019{1642;

- A* . .
(2) Calculate the lot size (O using the formula in |5 | 2 fa00| 10 [soo0e| i } 2 | 180 | 400 {so00}sorbearfzzes

PIOpOSitionl 9 ]5000]8000]1000001200000] 200 | 400 [2515]2233]3162 188082192460,

10] 160 | 230 |100000]|200000] 7 | 9 |2615|2667]3625 ’2165 24342650

To compare the result of our scheme (é;) with that

of Lowe & Schwarz’s model (Q"), we provide the

following example.
Example 4. —- Comparison of é; and é*

Consider Example 1 again with ten various instances

of ranges of S, D and /. For each instance, we

compared the lot size Q* from Lowe & Schwarz’s

model with the lot size Q; from our scheme based
on the estimated valid range by propagation of errors.
In Table 1, (Q,Q-) is the true range found by an
optimization tool MATLAB (The MathWorks, Inc.
(2000)) and (9, 0) is the estimated range by the
propagation of errors technique. Note that that all the

ten Q%’s are valid while the four of Q" are not.

Table 1. Comparison of é; with Q‘

5. Conclusions

In the EOQ model with unknown values of demand
rate, setup and carrying costs but instead with known
ranges of them, we took sensitivity analysis into
consideration. In extending the Lowe & Schwarz’s
model, under the minimax criteria, we derived new
formula for generating lot size in case that we are
given a valid range on the true lot size. To estimate
the valid range, the propagation of errors technique
has been used and its applicability was tested by
examples. Finally, we suggested the scheme for lot
sizing that first estimates the valid range using
propagation of errors technique and then calculates
the lot size from the new formula. Experiments
showed that the scheme is more likely to generate

valid lot sizes than the Lowe & Schwarz’s model
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