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Abstract

We consider the problem of grouping orders into
lots. The problem is modelled by a graph
G = (V,E), where each node v & V denotes
order specification and its weight @ (¢) the
orders on hand for the specification. We can
construct a lot simply from orders of single
specification. For a set of nodes (specifications)
@ < V, if the distance of any two nodes in &
is at most d, it is also possible to make a lot
using orders on the nodes. The objective is to
maximize the number of lots with size exactly
A. In this paper, we prove that our problem is
NP-Complete when d=2,A=3 and -each
weight is 0 or 1. Moreover, it is also shown to
be NP-Complete when d=1,A=3 and each
weight is 1, 2 or 3.

1. Introduction

In modern manufacturing, it is the usual case
that orders in large variations of specifications
come with small quantities. In order to handle
this situation, we often make production facilities
flexible to with  different

specifications at the same time. Some orders

process  orders
with similar specifications can be grouped to a
lot for production. For instance, in steel industry,
orders of charges are specified by the ranges of
widths and thicknesses. When the specifications
on widths and thicknesses are not different
of the

specifications can be consolidated to be processed

significantly in dimension, orders

simultaneously.

We formally model our problem by a graph. A
graph is a pair G=(V,E), where V is a
finite set of nodes and £ has as elements sets

of two nodes in V called edges. Each node »
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coresponds to an order specification and its
weight (v )denotes the order quantity on hand

for the specification.

The distance of two nodes # and ¢ is one if
{4,v} &= E. In general, the distance between u
and v is the distance of the shortest path from
# to o This can be found easily using the
Floyd-Warshall algorithm {Floyd, 1962,
Papadimitriou & Steiglitz, 1988, Warshall, 1962).
Then, orders with specifications % and v can be
grouped if the distance is no greater than the
allowable distance limit of d. A lot type is any
subset g of V. If the cardinality of @ is one, it
is  called called

heterogeneous. A heterogeneous lot type g is

homogeneous  otherwise

jeasible if the distance of any two nodes in g is
at most d. Then, given a /ot sizz X (a positive
integer), a /ot with respect to the type g is the
order
(specifications) in 8. A lot is feasible if its type

quantities corresponding to the nodes
g is feasible and the total sum of the order
quantities from the nodes in g is exactly A. The
objective function is to maximize the number of
lots, whether homogeneous or heterogeneous,
with size A. We call our problem maximum lot
grouping problem or maximum grouping problem
in short. Notice that if A= 2,d= 1, and every
w(v) =1, v & V, our problem is the same as
maximum matching problem, for which optimal
algorithms are provided (Micali & Vazirani,
1980, Papadimitriou & Steiglitz, 1988).

In this paper, we consider the hardness of the
maximum grouping problem. The most key factor

determining the problem's intractability would be
distance limit more than anything else of other
parameters of lot size and weight. Firstly, we
will show that the problem with d=2 is
when the graph G is
A=3 and every w(¢)=0 or
w(y)=1 for v & V. Next, we deal with the
case of d=1. The problem with d=1 is

NP-Complete even
bipartite,

proved to be NP-Complete in general And it is
still hard even though the graph (G is bipartite,
A=3, and every w(v) =1,2 or 3 for v & V.
In the next section, a mathematical formulation
is given to describe the problem explicitly and in
section 3, the hardness of the maximum grouping
problem is proved. Finally, conclusion follows in

section 4.

2. Problem definition

For a feasible lot type # € V, its lot is denoted
by % where () is the quantity from the

node v £ @ Note that Exo(u)-—‘ A. The
v-_ @

following lemma presents a useful result which
allows us to make homogeneous lots as many as

possible from heterogeneous lots.

Lemma 1

Given two heterogeneous feasible lots, ;59 and Z;,
with respect to the same type g, € > 2, we can
make two feasible contracted lots zy and zg,
Ty, g = 6, where <=8 or 8 cé

Proof.
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Let @ ={v,, .., w)} #= 2. Let v; be the first

node such that

Z(;G(""j)'*‘ jEf)("{:j)) < A and

2(50(%)4‘ ze(v;)) = .

Then, we make a lot zy; where 6" = {v, ]}

and
xg('Uj) = ;;9(’”])-!_ ZAG(’UJ) for -?= 1:...11._1:
i—1 _ N
7y (v;) = X — E(zo(vj)"‘ zo(v;)).
;=
Next, we will consiruct another lot zy. First,
consider the case of
;:e(w,-) + z4(v;) — 25 (v;) > 0. In this case, we
let 6”={v, ., v} and

construct %y with

290 (1) = Tg(v) + %5(v,) — 25(v,) and

o () = ;a("j)*’ ze(v;) for j=i+, k.
Next, consider the case of

z6(v;) + zg(v;) — xg(v;) = 0. Similarly, we let
0" = {7"€+1:...:'Uk} and

2 (v;) = o (v,) + % (v;) for j=i+1, k.
Then, we can see that & C @ or 8" C 8 with

219('0)= 2:@.(11):)\. Hence, zy and
4 v &

L

xy, are feasible contracted lots with respect to

type @

In most case of the real manufacturing, it is
suggested that we make homogeneous lots as
many as possible rather than heterogeneous ones.
Applying

Lemma 1 continuously to all

heterogeneous lots, we can finally get the desired
solution that no more than one lot is constructed
for each heterogeneous type (though several lots
are possibly constructed for each homogeneous
type). In addition, from the lemma we can
assure that there always exists an optimal
solution such that no more than one
heterogeneous lot was constructed for each
heterogeneous type. Hence, it is enough to use a
binary integer variable for each heterogeneous
type to describe the amount of lot constructions.
Let g be a set of feasible heterogeneous types.
Then, for a type € = &, we use the binary
variable ¥y to identify whether a lot has been

constructed or not. Note that for a heterogeneous

type g, we have yy= 1 iff Ezo('u) = X. The
v @

number of homogeneous lots for 8 = {¢} is just

denoted by ¥, Then, we can formulate our

problem as the following integer programming

problem:

Meximize 2%+ 276
Subject to

Ay o— vze:ax g(’l))=0 =6
Ay ,— Aax )< w(v) eV

% o(0) 20, x o(0): integer for p=g, f= G
y.20,3,:
ys=0 orl for f=@

integer for p= T
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3. The hardness of maximum lot grouping

problem

We will
problem is NP-Complete, which further means

show that the maximum grouping
that polynomial optimal algorithms cannot exist
unless P=NP. Even in the restricted cases that a
lot size, a distance limit and weights have small
values or the graph is bipartite, the problem will
be proven to be NP-Complete. To this purpose,
we investigate the computational complexity of
of the

decision  versions maximum grouping

problem.

Theorem 2 For the maximum
problem G =(V,E)

lot grouping
with d=2,A=3 and
each weight 0 or 1, the question of deciding if

there exists number of [Z w(v)/A] feasible
ve ¥V

lots is NP-Complete, where [z] denotes the

smallest integer no greater than x.

We prove this result by showing that the known
NP-Complete problem 3-dimensional matching
can be transformed to the maximum grouping

problem.

3-Dimensional Matching (3DM).
A= {alt fers a"n}'

.. ¢,} and a family

Instance Disjoint  sets
B={b, .. b} C={c1,..
F={n, .7, of triples with
| sNA| = | TiNB| = | T,NC| =1 for
i=1, ,m

Question : Does F contain a matching, that is, a
subfamily F' for which |F| =5 and

Uge rTi= AUBUC?

A={a,a,} T,={a,b,c}
B={b,b,} T,={a.b,,c}
C={C‘,Cz} T?,:{apb;ac}}

F={.5,.T;}

(a)

D,

"73

(b)
Fig. 1. (a) A 3DM instance and (b) the comresponding
graph.

For the sets A,B,C and F, we define
coresponding node sets V,, Vg, Vo and Vr as
follows:

Vy= {va,» et 'Ua_}, Vg= {T’b,a - ”b,,};

Vc:{wa-..qu.}l VFz{Uﬂ)..,lva}r

Proof of Theorem 2
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Given an instance of the above 3DM problem,
we construct an instance of the maximum lot
grouping problem G = (V,E) with lot size
A = 3, distance limit d= 2. The node set V is

given as follows:
V= VU VgU V.U Vi

Edges exist only when there is a corresponding
triple in F:
edges are constructed between the nodes vy and

Vg Uy, OF Uy, that is, three edges
{vg, v%}, {vg, vy} and {vg, v,} are constructed
if T;={a; b, ¢t is in the family F. Now,
we consider the weight of each node. We let

w(y,) =1 (w(v,) =1, w(y,) =1) for each
a - A

; (b, B, ¢ C), respectively. And

for each T;<. F, let w(vg)=0. In Fig. 1,

the graph comresponding to an instance of 3DM
is illustrated (the weight of each node is the
number in the circle). Note that

SOV

It is quite simple to show that there is number

of n feasible lots if and only if there is a
3-dimensional matching. Suppose there is a
matching F. For each T;={a; b, o)} © F,
make a lot from the weights on the nodes
Ugs Uy and v,, ie, a lot % (with yp=1) for

the type where
Ty (vz) =0 »

6= {vg, v, vy, 7,

7y(v,,) = 75(vy) = 3y(v,) = 1.

Note that the distance between any two nodes of
@ is at most two and the size of % is three.
Thus, %p is a feasible lot. Since there are =
triples in the matching, we can make the =

corresponding lots.

Conversely, suppose that there are % lots in G.
As the lot size A is three and each node has
weight at most one, in the n lots there are no
homogeneous ones. Note that, in V, for any two
nodes 4,v with distance at most two, there must
T;={a, by, c;} ¢ F such that
Then,

exist a triple
u, v & {vg, Vg, Uy, V- recalling  the
distance

limit constraint 4 =2, we see that any feasible
subset of nodes

T, that is,

lot type & must be a

comresponding to a triple, say,
6 < {vg, v, vy, v,}. Let % (with yo=1) be a
feasible lot where 6 C {vr, v,, vy, v,}. Since
the lot size is three and the weight of vy is
zero, 8 is {'uaj, vy, ve} or {vg, Vg Vay Vo)

Thus, for the lot X,

. we have
xﬁ(va,) = z(vy) = xo(vo,) =1 or
o (05) = 2(0) = (0) = 1 (o) = 0.

In either case, we see that for each lot %4 there
exists exactly one comresponding triple Ij. Now,
we choose % iriples comresponding to the 7 lots.
Note that each node v (v, v,) has weight one.
Thus, its weight or order quantity cannot be

used in more than one lot, which means that the

corresponding element aj(b,,, ¢;) does not belong
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to more than one triple of the chosen # triples.
Therefore, we conclude the set of n triples is a

matching.

Corollary 3
For the maximum lot grouping problem
G=(V,E) with d=2,1 =23 and each weight

0 or 1, the question of deciding if there exists
number  of [E w{v) /X Jfeasible  lots s
v, V

NP-Complete even when G is bipartite.

Proof.

Let's consider again the graph G = (V, E)
comresponding to a 3DM in Theorem 2. Let
X=V,UVgUV, and Y= Vg Then, note
that the node set V' is partitioned into two
disjoint sets X, Y and no edge exists between
any two nodes in X and between any two nodes
in Y, but edges exist between nodes in X and
nodes in Y. Hence, G is a bipartite, proving the
corollary.

Notice that when the distance limit d is one,
one can find maximum number of lots using the
cardinality matching algorithm if
v & V (Micali
\& Vazirani, 1980, Papadimitriou \& Steiglitz,

in the

maximum

A=2, and every w(v)=1,

1988). However, as we shall see
following theorem, the maximum grouping
problem is still hard in general even though the
distance limit is one. The proof of the following
theorem is almost similar to that of Theorem 3.7

in (Garey \& Johnson, 1979). We will transform

our problem to 3DM as has been done in

Theorem 2.

Theorem 4

For the grouping  problem
G=(V,E) with d=1,A=3 and each weight
1, 2 or 3, the question of deciding if there

maximum lot

exists number of [, w(v)/A] feasible lots is
vV

NP-Complete.

Proof.

For the 3-dimensional matching problem, we
construct an instance of the maximum grouping
problem G = (V,E) with lot size A=3. The

nodes and edges in the graph G will be

specified from the the friples For each ftriple,
T:={a; b, ¢}, we construct a graph with edge
set B;(| E;] =6) as shown in Fig. 2, where
the weight of each node is the number in the
circle. Then, the node sei V and edge set E of

are given as follows:

V= (VU VeU V) UL {y;: 1 <5< 4},
E-— yn,E,

Note that the total sum of weights of V is

Mw(v)=|VsU VU V¢l + 9| F|
v_ ¥V

= 3(n+3m)

and [vng('u)//\] = n+ 3m.

We want to show that there is n+ 3m feasible

lots if and only if there is a 3-dimensional
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Fig. 2. The graph for the triple T; = {a;, b, ¢;}.

matching. Suppose there is a matching F' from
F for A, B and C. From this matching we can
find pumber #+ 3m lots from G, as described
in the following: if T;={a, b, ¢} is in the
subfamily F’, then the comesponding lots (three
heterogeneous lots and one homogeneous lot) are
given by

Yoy =1 (zeﬂ('ua,») =1, %ﬂ(”u) =2),

Yo, =1 (:z:%(v,,h) =1, %(%‘2) =2),

Yo, =1 ("’a.s(”az) =1, xa,(%'s) =2),

Yo, =1

otherwise if T is not in the subfamily F", then

the corresponding lots (three heterogeneous lots)

are given by

Yo, =1 (xcn(”n) =2, 7, (%) =1),
Yo, = 1 (xaﬂ(uﬂ) =2, xen('u’ﬂ) = 1)1

Yo, =1 (2, (u3) =2, x, (uy) =1).

Conversely, suppose that there is a solution with

n+ 3m lots, that is, Z Yo+ 2 Yo = n-+ Im.
ve v gz 6

@qs’l'hen, the corresponding matching is given by

Corollary 5§
For the grouping  problem

G=(V,E) with d=1,A =3 and each weight
1, 2 or 3, the question of deciding if there

maximum lot

exists number of [E w(v)/A] feasible lots is
vV

NP-Complete even when G is bipartite.
Proof.

Consider the ghouping
G = (V,E) comesponding to a 3DM in
Theorem 4. Let X and Y be defined as follows:

maximum problem

X= VAU VEU VcUI;c. F{uﬂ}’
Y= Uz plta, th, ws).

Then, note that the node set V is partitioned
into two disjoint sets X, Y and no edge exists
between any two nodes in X and between any
two nodes in ¥, but edges exist between nodes
in X and nodes in Y. Hence, G is a bipartite,
proving the corollary.

4. Conclusion

In this paper, we introduced the maximum Jot
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grouping problem. For the distance limit of two,
the problem was shown to be NP-Complete even
when the graph is bipartite, the lot size is three
and each weight is 0 or 1. Next, we considered
the case that the distance limit is one. Also in
this case, the problem was proved to be still
NP-Complete even when the graph is bipartite,
the lot size is three and each weight is 1, 2 or
3.

It is open question whether an optimal algorithm
exists for the case that d=1 and the graph is
grid. In general, we need to develop efficient
approximation algorithms for maximum grouping

problem.
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