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Abstract

We consider a PCB grouping problem arising
from the electronic industry. Given a surface
mounting device, several types of PCBs and a
number of component feeders used to assemble the
PCBs, the optimization problem is the PCB grouping
problem while minimizing setup time of component
feeders.

We formulate the problem as an integer
programming model and propose a column
generation approach to solve the integer
programming formulation. In this approach, we
decompose the original problem into master problem
and column generation subproblem. Starting with a
few columns in the master problem, we generate new
columns successively by solving subproblem
optimally. To solve the subproblem, we use a branch-
and-cut approach. Computational experiments show
that our solution approach gives high quality
solutions in a reasonable computing time.

1 Introduction

The electronic industty relies heavily on the
production rate of surface mounting devices (SMDs)
to be used for the mounting of electronic components
on the surface of printed circuit boards (PCBs)
(Crama et al. 1990). The production rate in the PCB
manufacturing environments depends on the two
factors that influence time for the PCB assembly.
One is the time needed to assemble a PCB when a
PCB is produced (Crama et al. 1990, Yu et al. 1997).
And, the other is the setup time of component feeders
when several types of PCBs are produced (Carmon et
al. 1989, Bhaskar and Narendran 1996, Daskin et al.
1997, Rajkumar et al. 1998). In this paper, we
consider an optimization problem concerned to the
second case, which we call a PCB grouping problem.

The problem considered in this study can be
described as follows. A set of several types of
PCBs is to be produced on a SMD. The machine
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has limited lanes to which feeders are placed. The
set of PCBs are divided into some groups satisfying
the lane capacity of the machine. All component
feeders, which are necessary to produce all PCBs
included in each group, must be loaded into the
machine simultaneously. In the general case,
PCBs are allowed to be loaded multiple times (one
per group) and components are allowed to be
included in multiple groups. However, the
proposed solution method will focus on a restricted
class of problems in which each PCB is loaded
exactly once. In that case, all of the component
feeders required by a PCB must be included in the
group in which the PCB is included. Thus, the
problem can be defined to determine the set of PCB
groups with the objective of minimizing the total
setup cost of component feeders.

Now, we give some details of our problem
including assumptions as follows.

1) The setup of a component feeder consists of
loading and unloading into the machine stage.

2) A mechanical setup (i.e., changing the dimension
of the machine’s table or changing the width of
the conveyor carrying the PCBs to the machine)
between PCBs in the same production group is
not required. This is usnally accomplished by
‘paneling’, a method in which several PCBs are
assembled as a single standard sized panel that is
later cut to the correct dimensions.

3) PCB transfer times into and out of the machines
are negligible.

4) Refilling components in the machines during
assembly is not considered, since the quantity of
each component required is independent of the
scheduling method used.

5) The number of lanes required by all feeders is
larger than the machine capacity.

6) Machine operation time is not significant.

The PCB grouping problem is not new in the
sense that many researchers have studied similar or
the same problems (Carmon et ol, 1989, Hashiba
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and Chang, 1991, Maimon and Shtub, 1991, Luzzato
and Peona, 1993, Daskin et al, 1997).

Contrary to the previous researches based on
hewristic algorithm, we propose a new approach to
solve the PCB grouping problem by a colimn
generation approach. In our approach, we
decompose the original problem inte master problem
and column generation subproblem. Starting with a
few columns in the master problem, we generate new
columns successively by solving subproblem
optimally. The process of adding columns is
repeated until no more profitable colhumn can be
found. To solve the subproblem optimally, we use a
branch-and-cut approach, which is a generalization of
the branch-and-bound method using linear
programming (LP) relaxations. For general
expositions on the procedure, see Nemhauser and
Wolsey (1988).

The remainder of this paper is organized as
follows. In section 2, we formulate the PCB
grouping problem as two integer linear programming
problems. In section 3, we propose a branch-and-

cut algorithm to solve the column generation problem.

In Section 4, we provide the overall solution
approach to solve the PCB grouping problem. In
section 5, we summarize our computational
experiences with the proposed algorithm to the some
real world problems and some randomly generated
problems. Finally, concludings are given in section

6.
2 Mathematical Formulatiens

We present an integer programming formulation
for the PCB grouping problem. The basic idea is to
decompose the PCB grouping problem into a master
problem and a subproblem. The master problem is
constructed by a set of restricted number of columns
that indicate some grouping configurations and the
subproblem is constructed to generate columns
entered into the master problem. We define the
following notation used in this paper.

Notation

F: set of component feeders

J: set of PCB types

@, : setup cost of feeder f

B: machine capacity (the number of lanes in the
machine)

5, 1 the number of lanes occupied by feeder f

N, = {flaﬁ = 1}: set of indices of feeders required by
PCB j, where a; =1, if components in feeder f'is

needed by PCB J, 0, otherwise

G: the set of all possible PCB grouping
configurations

W(g): the set of indices of feeders required by a
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PCB group configuration ge G
P =1 i PCB j is included in a grouping

configuration g, 0 otherwise.
Note that an element geG

satisfied by the inequality 3,5, <B . We

must be

define a decision variable as follows.

1, if a grouping configuration g is selected

A =
¢ 0, otherwise

With these notation and decision variables, the

PCB grouping problem may be formulated as
follows:

(MP) min g‘&cslg Y)
s.t ijgﬂ.gzl,foralljeJ, 2)

2eG
Ay e 0} forallg € G 3)

where, c, = Zfew(g)af .

The objective function (1) states the sum of
costs of PCB-grouping configuration selected.
Constraints (2) ensure that each PCB must be
included in exactly one group.

The problem (MP) have exponentially many
columns in case that the number of PCBs and
feeders are large. However, we can solve a
relaxation problem of (MP) efficiently with a few
columns by using a column generation technique.
Let (RMP) be the LP relaxation problem of (MP).
Now, we assume that a subset G'C G of
grouping configuration is given. We define the
restricted linear program (RMP") replacing G by
G'" in (RMP). The solution of (RMP’) is
suboptimal to (RMP). Let =, be the dual

variable associated with j-th constraint n (2).
Then, the constraints in the dual problem of (RMP)

are

2 p,7; <c, JorallgeG. @)
jes

Let 7' be an optimal solution to the dual of
(RMP’). Then, it is also optimal to the dual of

®RMP) if T, p,7; <c,forallge G\G'
From (4), the optimality condition for (RMP) is

max| Y p. .7 — Ta gEG]SO 5)
(ze: B e’ |

Thus, we can solve (RMP) staring with some
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restricted initial columns by introducing columns that
satisfies the optimality condition (5) continuously
until no more columns are generated.

To formulate the column generation problem,
we introduce variables x, and y;, which indicate
whether feeder fand PCB j are included the group or
not, respectively. If PCB j is included in a group
(¥, =1), then comesponding feeders are included in
the group (x, =1 for feXN,;). And, the number
of lanes occupied by all feeders included in the group
equals to or less than the machine capacity, B. Thus,

the column generation problem can be formulated as
follows.

(SP) max erjyj—Za,xf ®)
JjeJ JeF
st. y;<x,, forallfeN; and jeJ (7)
2S5;x, <B ®
JeF
y; €401}, forall jeJ ®
x, €{0,1}, forall feF 10)

Constraints (7) imply that if any PCB j is
included in a group, all feeders needed to assemble
the PCB must be also included in the group.
Constraint (8) states that the number of lanes
occupied by all feeders included in a group equals to
or less than the number of machine capacity.

Note that (SP) is the precedence constrained
knapsack problem.  Generally, the problem is
known to be NP-hard problem (Boyd 1993). (SP)is
also NP-hard even though this problem has a special
structure of general precedence constrained knapsack
problem (Park and Park 1997). In the following, we
will present solution procedures to solve (SP).

3. Subproblem Optimization

3.1 Valid inequality

The problem (SP) is a generalization of the
knapsack problem by including a partial order on the
items, which are associated with feeders and PCBs.
It is said to be a precedence constraint from item f'to
item j if item j can be included in the knapsack only if
item f is included. That is, only if x, equals to
zero for f € N, then the comesponding y; equals
to zero.

For a given instance of (SP), we can define the
associated precedence graph D= (V,4), where the
set ¥ of nodes is the union of the set F and the set J,
ie, V=FUJ, and the set 4 of arcs represents the
precedence relationship between nodes in V. Note
that (f,j)e4 if and only if y, <x,, for all

feN; and jeJ . For (f.))ed, nede f is
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called a predecessor of node j and node j is called a
successor of node f.

The pair of node &k, €V and node k, €V is
called incomparable if both (k.k,)e 4 and
(k,., k)2 4. Aset CCV is called incomparable
if the elements in C are pair wise incomparable.
Note that the sets I and J, both are incomparable.

Suppose that an instance of (SP) and the
associated graph D are given. From the well-
known results on the polyhedral structure of the
knapsack polytope, a subset CC F is a calied a
cover if 3 rects > B (Nemhauser and Wolsey

1988). And the associated inequality
Zfscxf SlCl—l is called cover inequality. A

cover is called a minimal cover if no proper subset
of it is a cover. If C is a minimal cover, then the

cover inequality 3. .X, SICl—l is valid for the

knapsack polytope. However, when there exist
precedence constraints between variables as our
application, the following modification is more
useful. We give the following notation throughout
remainder of this paper.

N(C)=UN,
T(C)= CUN(C)

Definition 1. CcJc¥? is a minimal induced
cover (MIC) if

() Cis incomparable

(D X fer(c)Sy > B, and

WD reraypss < B, forall jeC

In words, a minimal induced cover is a set of
incomparable items, which together do not fit in the
knapsack, whereas all but one of them does fit in
the knapsack together. The definition 1 follows
the work of Park and Park (1997).

By a direct consequence of definition 1, it can
be easily shown that for a MIC CcJ, the
following inequality is valid for the polytope of the
set of constraints in (SP). We refer to this
inequality as the MIC-inequality.

>y, slc-1 (1)
je<

With the MIC-inequality, We can get stronger
cutting planes by lifting the variables in F and
JAC into the MIC-inequality using a lifting
procedure. Lifting is a systematic procedure to
obtain valid inequalities for a polyhedron from
valid inequalities for lower dimensional polyhedron.
For the details of the general lifting procedure, refer
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Nemhauser and Wolsey (1988) and Park and
Park(1997).

3.2 Separation

Now, we give a formulation of the separation
problem to find a minimum induced cover and an
algorithm to solve the problem. Given a fractional

solution (x‘, y‘) of (SP), the problem is to find a

minimum induced cover C satisfying the following
inequality.

2, >|-1 (12)
Je<

Inequality (12) is equivalent to > e c(1 - y;) <1.
All values of s, for feF are positive integers.

Thus, the separation problem can be formulated as
follows.

(SEP) min J_%a— )z, 13)
s.t. Zsfxf23+1 14
feF
x, £ XYz, forall feF (15)
wtew,d
x, €401} forallfeF (16)
z,€{01}, forall jeJ an

When |F|=B+1 and s,=1 for all feF,

(SEP) is equivalent to the set covering problem.
Thus, (SEP) is NP-hard.

Now we give a heuristic algorithm to solve
(SEP). The basic idea of the heuristic algorithm is
to add an element in J, having the more successors

and the larger value of y; , to C continuously until

the knapsack is filled with the feeders, updating the
curent precedence-successor graph.  Given an

associated graph D= (V,A), the heuristic algorithm
is described as follows.

HSEP; Separation hewristic for finding a MIC
Phase I Find an induced cover.
Step 0: Initialize.

Set D' ={y*,4°)

where V° = (F",Jo)z ¥V and 4°=4.

Set Nf =N, forall jeJ.

Set C=¢ and t=0.
Step 1: Find a node with the largest weight.
b.a),

From a graph D =
Compute the weight
u?:ZfeN;sf/(l—yj) for jeJ'.
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Set ;"= argr?eajgc{ uj. }

(if ties are happened, select arbitrary).
Step 2: Update set C.

Add ' tothe G ie, CeCUY'}.
Step 3: Check feasibility.
It ZisisenjecrSs > B, go to phase 2.
Otherwise, go to next step.
Step 4. Update graph.
Set tet+1.

F=F\feF-|renty.
7 =g

v =(F"J).

4 = a5, ))e 47re v
D' =4).

N’ ={feF"(f,j)eA’}.

Go to step 1.

Phase 2: Select minimal elements in C.
Without loss of generality, let the set C'be

2. fdfy.
For £=1 to |C|,do
I 3 eysy > Brset CeC\{k}

3.3 Branch-and-cut procedure

Let (RSP) be the LP relaxation of (SP). The
branch-and<ut procedure begins with solving
(RSP). If the optimal solution to (RSP) is integral,
we get an optimal solution to (SP) and the
procedure is terminated.  If not, an upper bound of
the optimal solution to (SP) is provided by this
solution. And we proceed to find a lifted minimal
induced cover by the separation heuristic ASEP and
the lifting procedure. This inequality is added to
(RSP) and we solve (RSP) again. These steps are
repeated until no more inequalities can be found or
an integer solution to (RSP) is found. When we
cannot find any more minimal induced covers, we
start branch-and-bound step. At each node in the
enumeration tree, we apply the same procedure
used in node 0.

When branching is needed at any node in the
enumeration ftree, we select a variable among
variables y, for j€J whose absolute value of

current value minus 0.5 is mininum. We need not
to branch the variable x because if all values of y
are integral in an optimal solution to (RSP), then x
is also integral.

Assume that y; is a branching variable on

which we perform branching. Then, we make two
new nodes in the enumeration tree, one with
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¥; <0, the other with y, >1. Instead of adding

those constraints explicitly to (RSP), we redefine the
upper and lower bound of the variable. After a
branch, we use best-bound rule (Nemhauser and
Wolsey 1988) for node selection.

4. Algorithm for (MP)

4.1 Overall procedure to solve (MP)

We assume that a subset G' C G, which is the
set of initial columns, is given. After we solve
(RMP"), which is the linear programming problem of
replacing G into G’ in (RMP), we get optimal dual
values =, for all jeJ, corresponding to rows in

constraints (2). Using these values, we solve the (SP).
If the optimal objective value is not satisfied by the
optimality condition, we construct new entering
column using the optimal solution value. This
column is added to (RMP"), and the procedure is
repeated until no columns are generated. When no
more columns are not generated, if the optimal
solution of the current (RMP') is integral, we get an
optimal solution to (MP). If not, we start a branch-
and-bound algorithm to (MP). The overall
procedure to solve (MP) is summarized below.

Procedure to solve (MP)

Step 1:  Generate initial columns using the
(Procedure 1) and construct initial LP
relaxation problem (RMP’)

Step 2:  Solve (RMP') and get optimal dual values

7, forall jeJ.

Step 3. Construct the column generation problem
(SP) using 7, , and solve the (SP). If an
entering column is generated, mtroduce the

column to (RMP) and go to step 2.
Otherwise, go to step 4.

Step 4:  If an optimal solution of the current (RMP')
is integral, we get an optimal solution to
(MP) and the procedure is terminated.
Otherwise, perform branch and bound
algorithm.

4.2 Construction of initial columns for (MP)
Consider two different PCBs j, and j, such

that N, C ¥, . It can be easily shown that at least

one optimal solution have PCB j, and PCB j, in
the same group (Daskin et /. 1997). In this case,
we say that the PCB j, dominates PCB j,. The
procedure to fine initial columns starts from
removing the dominated PCBs from the set of all
PCBs. Let J' denote the resulting set of PCBs.
The PCB grouping problem is NP-hard, but
Daskin et 2l. (1997) also showed that if each group is
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constrained to have 2 or fewer PCBs and no PCB is
produced more than a single group, the problem can
be solved in polynomial time using a minimum
weighted matching algorithm. Thus, we can
construct a set of groups, G', having 2 or fewer
PCBs from J' by using the mininum weighted
matching algorithm. And then, for each pairs of
elements g,k€G’, we define two numbers ¢,

and p, , which indicate similarity and

dissimilarity between g and %, as follows.
&, ; the number of feeders used by both group g

eh?
and group 4.
Py i the number of feeders used by either group g
only or group % only.

Using the two numbers ¢, and p,,, we
define the similarity measure of two groups g and %
as simy =@, /(qﬁg,, + pg,,) . A pair of groups
having the largest value of the similarity measure is
merged into one group. After a new group is
founded, the similarity measures associated with
the new group are redefined. This procedure is
repeated until more merged groups cannot be found.

4.3 Branching Strategy

In our study, we have not incorporated the
branching scheme in the proposed algorithm since
the RMP gives either integer optimal solutions in
many cases or tight lower bound in the other cases.
However, we can also try to find an integer optimal
solution by using the branch-and-price algorithm,
which is very similar to the branch-and-bound
procedure except that we solve the subproblem at
each node in the branch-and-bound tree by using
the column generation.

When the branch-and-price approach is used,
the main difficulty arises in the column generation
after some subset of the variables is fixed at 0. To
prevent the generation of columns that were set to 0,
a careful branching rule should be used. For the
current problem, we can use a branching scheme
due to Ryan and Foster (Ryan and Foster 1981,
Vance et al. 1994). The branching scheme
consists in partitioning the set of solutions into
those in which two specific PCBs lie on different
groups, and those in which they lie on the same
group. Following shows the details.

Setting two specific PCBs % and j lie on
different groups is equivalent to setting
deG(h,j))A’g =0, where G(h,j) is the set of
groups having PCB %2 and PCB /.

In this case, we set y,+y, <1 when solving
(SP) and set A,=0 for all geG(h j) when

solving (MP). On the other hand, setting twe
specific PCBs # and j lie on the same group is
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equivalent to sefting ZZEE(-"»J'))AQ =0 , where

5(h, J) is the set of groups having either PCB % or
PCB j. In this case, we set y, =y, when solving

(SP) and set A =0 for all geG(kj) when
solving (MP).

5 Computational Results

In this section, we outline test results of the
proposed column generation approach to four data
sets, DATAI, DATA2, DATA3 and DATA4. DATAI
consists of 10 problems presented in previous
researches. The problems in DATA2, DATA 3 and
DATA4 are constructed from problems in DATAI by
changing some input parameters. For problems in
DATAI, we assume that the setup time of each feeder
equals to 1 and the number of lanes occupied by each
feeder is also 1 in order to compare the performance
of the proposed algorithm with the one of other
algorithms presented in previous studies.

For the problems in DATA42, DATA 3 and
DATA4, we generate the setup cost of each feeder,
the number of lanes occupied by each feeder and the
machine capacity randomly. For all problems in
DATA2, DATA 3 and DATA4, the setup cost of each
feeder and the number of stages occupied by each
feeder are randomly generated from a discrete
uniform [1, 10] and [1, 4], respectively.

The machine capacity is generated as follows.
For each problem, we find the number of lanes,
denoted by l(j), necessary to allocate all feeders for

PCB j. And then, we multiply a real number » by

the maximum number among I(j) for all jeJ.

We unse r=11, r=13 and r=15 for the
problems in DATA2, DATA3 and DATAM,
respectively. Note that the more the value of » is
large, the more the size of knapsack is large. This
makes the problem more complicate.

We used CPLEX 4.0 callable library as the LP
solution routine and the other routines for adding
inequalities and changing bounds of variables.
The test problems are solved on Pentinum-3 (500
MHz).5.2 Performance of the column generation
approach

The results for 10 problems in DATAL are
summarized in table 1. In table 1, we can see that
the proposed column generation algorithm
outperforms than other heuristic PCB grouping
method proposed i previous researches for all
problems. Furthermore, in table 2, we summarize
results of performance measures to evaluate the
proposed approach. In table 2, we can see that we
get the optimal solution at node 0 without branch.

And, we found an optimal solution for one
problem (problem no. 5) in the branch-and-bound
phase. These are very attractive results in
comparison with and-bound phase in 6 problems
out of 10 problems. the ones by other approaches
presented recently. Moreover, the solutions are
obtained within reasonable time.

In table 3, table 4 and table 5, we summarize
test results for the problems in DAT42, DATA3 and
DAT14. We found optimal solution for 18
problems of 30 problems.

Tablel. Test results for DATA!

Problem Size Capacity Setup Time
No. (VXA B Conventional Heuristics Proposed
AlY 8X53 15 78 68 68
A2Y 920 14 74 52 48
A3 9X30 20 79 60 52
Ad 15%350 30 197 140 119
ASY 16X 53 12 113 76 76
A6 18X65 35 345 N/A 264
AT 23X60 35 387 N/A 268
A8 25X75 45 557 411 376
A9 28X90 55 783 581 532
AlD 30X 100 60 926 717 643

Remarks; a) source: Maimon and Shtub (1991), b) source: Hashiba and Chang (1991)
¢) source: Daskin etal. (1997), source for others: Bhaskar and Narendran(1996)
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Table 2. Performance analysis of the column generation approach for DAT4 7

Solutions GAPYat  No. of No. of columns Solution
Problem Size node 0 B&B Initial  Additional Time
No. M > |FD IP LP %) nodes columns” Columns® (sec)
Al 8X353 68 68 0.0 - 11 3 38
A2 9X20 48 48 0.0 - 12 6 52
A3 9X30 52 52 0.0 - 12 8 7.4
A4 15X 50 119 119 0.0 - 20 25 103.1
AS 16X53 76 759 043 3 22 17 28.5
A6 18X 65 264 264 0.0 - 27 15 149.8
A7 23X 60 268 260.0 2.98 31 31 37 958.0
A8 25X75 376  369.9 1,62 18 34 41 1681.2
A9 28X 90 532 5272 0.90 5 39 36 2526.9
Al0 30X100 643 643 0.0 - 42 45 6342.6
Remarks; 1) GAP: The ratio of the objective value of the LP relaxation to the optimal integer solution of (IP)
[(IP optimal — optimal value of LP relaxation) /IP optimal] X 100
2) Initial columns: number of initial columns of master problem
3) Additional columns: number of columns generated by the column generation problem (SP)
Table 3 Performance analysis of the column generation approach for DATA?2
Solutions GAP at No. of No. of columns
Problem Size node 0 B&B Initial Additional Solation
No. (VX IFD P LP (%) nodes columns  columns time (sec)
Bl 8X53 71 71 0.0 - 10 0 0.9
B2 9x20 55 543 1.27 3 13 4 45
B3 9X30 59 59 0.0 12 3 3.2
B4 15X50 170 170 0.0 - 20 6 21.5
BS 16X53 78 718 0.26 3 22 15 29.6
Bé 18X 65 313 313 0.0 - 22 8 54.9
B7 23X 60 323 323 0.0 - 30 14 123.8
B8 25X175 504 504 0.0 - 31 4 56.6
B9 28X90 729 729 0.0 - 33 1 315
B10 30X100 811 811 0.0 - 38 10 2251
Table 4. Performance analysis of the column generation approach for DATA3
Solutions GAP at No. of No. of columns
Problem Size node 0 B&B Initial Additional Solation
No. W=D IP LP %) nodes columns  columns time (sec)
C1 8X53 67 67 0.0 - 10 4 39
C2 9X20 41 41 0.0 - 12 8 6.1
C3 9%x30 54 54 0.0 - 11 9 9.8
C4 15X 50 140 1385 1.07 1 21 12 454
C5 16X53 72 702 2.50 3 22 23 40.1
Cé 18X 65 275 275 0.0 - 27 9 66.9
c7 23X 60 280 276 1.43 10 33 31 557.9
C8 25X75 425 4225 059 1 35 21 346.4
Co 28X 90 625 625 0.0 - 38 19 371.9
C10 30X100 704 700 0.58 5 43 28 2541.2
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Table 5 Performance analysis of the column generation approach for DATA4 4

Solutions GAP at No. of No. of columns
Problem Size node 0 B&B Initial Additional Solution

No. (U1 X FD P LP (%) nodes columns  columns time (sec)
Cl 8X53 65 63.3 2.61 3 11 7 7.2
C2 9X20 32 32 0.0 - 11 11 4.6
C3 9x30 49 49 0.0 - 12 10 10.9
C4 15X 50 119 119 0.0 - 20 25 116.6
C5 16X53 67 65.8 1.79 1 21 30 60.4
Cé 18X 65 244 2394 1.89 7 25 22 2554
c7 23X 60 246 2297 6.62 14 30 43 12454
C8 25X 175 379 3729 1.82 20 34 42 1806.5
Cc9 28X 90 550 542.5 0.15 4 39 31 1801.7
C10 30X100 601 5929 1.35 22 40 50 11849.8

6 Conclusions

In this paper, we consider a PCB grouping
problem to minimize the setup time of component
feeders. Contrary to previously researches, in this
study, we use an integer programming approach to
the PCB grouping problem. In this approach, we
decompose the original problem into a master
problem and a column generation subproblem.
Starting with a few columns in the master problem,
we generate new columns successively by solving
subproblem optimally. To solve the subproblem,
we use a branch-and-cut approach. The test results
for a number of real world problems and randomly
generated problems show that our approach performs
very well compared to other previous approaches.
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