#3AG A/ AddTEd 2003 A3 RN

2003 59 169-17¢ 5T Y)

7Eg A1zt A2 g YEHA 2AEY EA T PTAS

833
ZAY g 4333
BFF A B3 A% 375 501-759

A PTAS for nonsimultaneous parallel machine scheduling

Hark-Chin Hwang
Department of Industrial Engineering, Chosun University,

Seosuk-Dong, Dong-Gu 501-709 Gwangju

Abstract

The parallel machine

assigning # jobs on m identical machines with

scheduling problem of
the objective of minimizing makespan is
considered. In this note, we apply the PTAS
(Polynomial Time Approximation Scheme) of
Hochbaum and Shmoys to our problem and show
that it is still a PTAS for our problem.

1. Introduction

We consider the problem of parallel machine
scheduling of # independent jobs on m identical
machines where machines are not available at
time zero. Formally, we are given a problem
instance J= (J,w), where J is a set of jobs
and T is a set of machines {1,2, . ,m}. Each

job z & J has its processing time p(z) and

each machine ¢ has its starting time s, > 0 for
4 & m. An assignment S; < J is a set of jobs
placed on the machine ¢ so that the load on the
machine 3 is s+ t(8), where
HX) = Zp(x) if X is not empty, otherwise
X
zero for any subset X © J. Then a schedule
8=<8,,8,> is a parition of J into m
disjoint assignments and its makespan is defined
to be max;._.{s+ #(5)}. In our problem, the
objective function is to find a schedule with the
minimum makespan. Given an instance [, we

denote OPT(I) as the mininum makespan.

This problem is NP-Complete [3] and hence it is
unlikely that there exists any polynomial-time
algorithm generating a schedule with the

minimum makespan. To atack such an
NP-Complete

consider some

problem, it is reasonable to

approximation algorithm which

= 145 -

B3B3 G A% e/ IAT e 2003 24T EREN S

20034 59 169-179 g5 Ndw(TH)

produces a schedule with a near optimal
makespan. Given a constant ¢ > 0, an algorithm
is called (1 + ¢)-approximation algorithm if it
always generates a schedule with makespan at
most (l1+¢) times {1+¢)

OPT(I), in polynomial time of the parameters

optimal, i.e,

7 and m for every instance I. Then, the family
of (1+ €)-approximation algorithms which run
in polynomial

time of the parameters », m and 1 /c is called

polynomial time approximation scheme (PTAS).

For the classical parallel machine scheduling
problem where all the machines are available at
time zero, Graham [4] presented the algorithm
LPT and showed it always generates a schedule
with makespan at most 4/3-1/3m times optimal.
Another binary
procedure, MULTIFIT, is developed by Coffman
et al [1] whose performance is proved to be
13/11 approximate [8].
approaches have been taken to deal with our

algorithm using a search

Similar heuristic
problem where machines are not available at the
start. The two algorithms LPT and MLPT are
proposed by Lee [7], which are shown to be
3/2-12m and 4/3
Chang

approximate, respectively.

and Hwang applied the algorithm
MULTIFIT to our problem and they proved that
it always yields a schedule with makespan no
more than 9/7 times

optimal.

In order to achieve better approximation, a new
approach has been developed. In [5], Hochbaum
and Shmoys proposed a dua/ approximation

approach which uses the primal-dual relationship

in the classical parallel machine scheduling
problem (primal) and the bin-packing problem
(dual). For the classical parallel
scheduling problem, they found a PTAS which

always generates a schedule with makespan at

machine

most 1+ € times optimal with the running time

loglﬁ
of O((n/e) ~ °) for every constant ¢ > 0 [6].

In this paper, we apply the dual approximation
approach and develop a PTAS for our problem.
way dual

approximation approach operates and then we

In section 2, we present the

give a PTAS in section 3.

2.Dual Approximation Appreach

Given a time deadline d and a constant ¢ > 0,
we classify jobs in J into two classes: big and

smatl jobs. Job x is called big job with respect

to d if p(z) > -I-%d. Otherwise it is called

small. Let's first
property of the list scheduling algorithm, which
will be a pat of our algorithm. The list

observe the fundamental

scheduling algorithm is a greedy algorithm which
runs as follows: given a predefined schedule &
and a set of unassigned jobs in J, it chooses
any job z from the set of remaining jobs and
assigns it to the machine with the least load,

that is, the minimum value of
5+ ES)+ P(x) for L < i< m.

AT A &2/ IE 388 2008 2AFE e

20033 54 169-179 #EdHTR(Z)

Lemma 1

Given an instance I= (J,x) and a time
deadline d2(1+e)OPT(I), €>0, et
J=J;UJ, where Ji (J,) is the set of big
(small) jobs with respect to d, respectively. If a
schedule § for the set J; has makespan no
greater than d, the schedule obtained by applying
the list scheduling algorithm to S and the set J
has also makespan no greater than d.

Proof.

Suppose the lemma does not hold. Then let % be
the first small job which could not be assigned
within time d and & be the latest schedule
made from S a the time right before z is tried
by the list scheduling algorithm. From the nature
of the list scheduling algorithm we have
5+t(8)+p(x)>d for al 1<i< m.

This implies s, + £(8/) > —~—d > OPT(I)
l1+e

. €

since p(z) < l_-i-_cd and thus we have

M s+ () > mOPT(I), which is a
s=1

contradiciion.

DUAL (1, d)represents ~ any function that

operates for the subset of big jobs with respect
to d and always retums true with a schedule
whose makespan is at most d for every instance
I wheneverd > (1 +¢)OPT(I}). However, if
d< (1+¢€)OPT(I) then DUAL, might return

false in which case the function could not

assign all the big jobs within time d. Given any
schedule successfully obtained by DUAL‘, it is
trivial to construct the complete schedule for all
the jobs with the same makespan of the DUAL,

schedule (Lemma 1) using the list scheduling

algorithm.
Now we consider our (1 + e)-approximation
algorihm MDUAL, (Muki DUAL)

MDUAL,(I,k) is a binary search procedure

that starts with its initial lower and upper bounds
CL(I) and CU(I) and gradually converges to
a desired time deadline by iteratively calling a
function DUAL, k times. The two bounds
CL(I) and CU(I) are defined as follows:

CLI) = 1% {Sym P (E+ $(J)) /),

CL(I) = Max {Spmct Prass 2 (Z"}ls.-+ #(7))/m}.

where s, denotes the largest starting time and
Pmax the greatest size. It has been proven that
CL(I) < OPT(I) and CU(I) < 20PT(I)

in [2]. Now we formally describe the algorithm
MDUAL, as shown in Fig. 1.

Procedure MDUAL. (I k)
begin
lower:= CL(I);
upper .= CU(I);
for i:=1 to k do begin
d:= (lower+ upper)/2;
if DUAL,(1, d) = true

- 147 —

B AG /NI HE 2003 AT ESEU S

20033 5¢¥ 169-17¢ sdgu(Leh

then upper:= d;
else lower = d;
end
end
Fig. 1. Algorithm MDUAL,

Let S be the latest schedule obtained from
DUAL,(I,d) with the returned value of #rue

MDIAL (I, k). The
schedule of MDUAL, is then defined as that

during the procedure

constructed from & after applying the list
scheduling algorithm for the remaining small
jobs. Similarly to the arguments in [1], we have

the following result on the performance of

MDUAL,

Theorem 2
The MDIAL,(1 k) always generates a schedule

with makespan at most 14+e+2-% times

optimal.

Proof.
Suppose the theorem does not hold. Then, there

exists a problem instance J for which

ZMDUAL

SETY > 1+e+27F 5]

where 2yppy; is the makespan of the final
schedule of MDJIAL, (!, k). From Lemma 1 and
the definition of DUAL,, 254, cannot be

of the schedule
generated by DUAL,(I,d) for the big jobs

greater than the makespan

whose sizes are greater than l—j_e-d where

d=(1+e+27%)OPT(J). Let uppen,
(lowery) be the last upper (lower) bound values

right after the &th trial of DUAL,(I,d). Then

by (1), we know the last upper bound value is
greater than (1 +¢+2-¥)OPT(I). Thus we

have
upper,> (1+ e+ 27 *)OPT(I). e}
By the nature of a binary search, we have

uppen, — lower, =

2=k, (CUI)—cL(I)2~%. oPT(I),(3)

since - CU(I) < 2CL(T) and
CL(I) < OPT(I). Then by (2) md (3)

lwer, > (14+ €) OPT(I). 4

Thus we know that DUAL, must have been
tried with its time deadline fowen, and it must
false, that is,
DUAL_ (1, lower,) = false at some point during

have returned

the binary search. However, this is impossible by
the definition of DUAL, and the fact

lower, > (14 €) OPT(I).

In the next section, we present a DUAL, which
is a modification of the dual algorithm by
Hochbaum and Shmoys (1997). Then, we have a
PTAS for our problem, which the family of the

- 148 -

A2 AY A g/ dd e 2003 £AFEHNY

2003y 5¢¥ 18¢2-174 EAE(ZE)

DUAL, algorithms for any € > 0.

3. A Polynomial Time Approximation Scheme

To simplify our arguments, we assume without
loss of generality that the optimal makespan of

an instance [= (J,m) is one, ie.,

OPT(I) =1 so that all the job sizes and

machine starting times are at most one.

We partition the interval (e,1] into subintervals
(ulﬂ’UI]l(uZ‘ ”2]'...!(“&:'“1:] h=c
’Uj= 'Uj_1(1+6). Note that

k=< I—OM. A configuration of an

€

where

w=1, and

assignment 5; can be presented by an k-tuple
(%1,,..,%), where each ; denotes the number
of jobs with size in the interval (u]—, 'uj]. Then, a

configuration (z,,,,,%,) is called jeasible for

k
machine i if s+ Exju,] < 1. We can show
i=1

that any assignment J; with feasible
configuration (z,, .., %,) has load at most
(1+e€).

Let f(n, ..,) be a function which returns
true if it can find a feasible configurations for
machines 4 to m otherwise false, where 7

denotes the number jobs with size in (,v;].

We can find a schedule with makespan at most

1+ ¢, using dynamic programming which runs

]Qgiﬁ

in time O((n/e) ¢):

film, ..., m) = true if there exists a feasible

configuration (=z;,,,.,7) for machine ¢ such

that £, (ny — =, ..., m— %) = true.

Note that for any time deadline
d > (1+¢)OPT(I), the dynamic programming
finds a with makespan a most
(1+¢)OPT(I) for big jobs. Then, from the
schedule we can make the final schedule for all
the jobs with makespan (1 +¢€)OPT(I) by

schedule

Lemma 1.

References

[1] E.G. Coffman Jr, MR. Garey, D.S. Johnson,
An application of bin-packing to multiprocessor
scheduling, SIAM J. Comput. 7 (1978) 1-17.

[2] 8.Y. Chang, H.-C. Hwang, The worst-case
MULTIFIT algorithm for
parallel
Discrete Appl. Math. 92 (1999), 135-147.

analysis of the

scheduling nonsimultaneous machines,

[3] M.R. Garey, D.S. Johnson, Computers and
Intractability: A Guide to the

NP-Completeness (Freeman, San Francisco, 1979.

theory of

[4] RL. Graham, Bounds on multiprocessor
timing anomalies, SIAM J. Comput. 17 (1969)
416-429.

[5]1 D.S. Hochbaum and D. Shmoys, Using dual

approximation algorithms for scheduling

problems: Theoretical and practical results, J.

- 149 -

B AI A/ N IA 2 2008 AT EG &N
20031 5¢ 169-17¢ ¢EATHu(Z

ACM 34 (1987), 144-162.

[6] D.S. Hochbaum, Approximation Algorithms
for NP-Hard Problems (PWS PUBLISHING
COMPANY, Boston, 1997, 370-371.

[7] C.Y. Lee, Parallel machine scheduling with
nonsimultaneous machine available time,
Discrete Appl. Math. 30 (1991), 53-61.

[8] M. Yue, On the exact upper bound for the
MULTIFIT processor scheduling algorithm, in
{\em Operations Research in China}, M. Yue
(ed.), Vol. 24 of Annals of Operations Research,
Baltzer, Basel, Switzerland, (1990) 233-259.

