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Abstract

The present study aims to accelerate the nonlinear convergence to incompressible Navier—
Stokes solution by developing a high—order Newton linearization method in non-staggered
grids. For the sake of accuracy, the linearized convection—diffusion—reaction finite—difference
equation is solved line-by-line using a nodally exact one—dimensional scheme. The matrix
size is reduced and, at the same time, the CPU time can be considerably saved owing
to the reduction of stencil points. This Newton linearization method is effective and is
demonstrated to outperform the classical Newton method through computational exer-

cises. (Fig.1)
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Figure 1: Comparison of the convergence histories for solving the nonlinear Navier-Stokes prob-

lem, which has the analytic solutions at Re = 1000. (a) convergence histories for u; (b) conver-

gence histories for v; (c) convergence histories for p; (d) the computed rates of convergence.
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