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Fluctuation of estimates in an EM procedure
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ABSTRACT

Estimates from an EM algorithm are somewhat sensitive to the initial values
for the estimates, and it is more likely when the model becomes larger and more
complicated. In this article, we examined how the estimates fluctuate during an
EM procedure for a recursive model of categorical variables. It is found that the
fluctuation takes place mostly during the first half of the procedure and that it can
be subdued by applying the Bayesian method of estimation. Both simulation data
and real data are used for illustration.

Keywords: Bayesian method; Calibrated initial values; Directed acyclic graph; Dirichlet
prior

1. Introduction

The EM method as proposed by Dempster et al. {1977) has been widely used for
parameter estimation when data are incomplete with missing values for a set of random
variables. It is easy to understand and the algorithm consists of two operations, expecta-
tion for the missing variables and likelihood-maximization. We will confine our attention
on a possible fluctuation of the estimates during the estimation process, and the variables
are all categorical. ‘

In educational testing, a task performance model is developed based on test data
and prerequisite or causal relations among the cognitive features such as problem solv-
ing capabilities, computational skills, adaptability, multi-step thinking ability, memory
of facts, meta knowledge, etc. The cognitive feature will be termed knowledge units.
It is reasonable to assume in that better knowledge states may yield a better perfor-
mance. In the same context, a better state of a set of prerequisite knowledge units of
a certain knowledge unit may yield a better understanding of the knowledge unit. This
phenomenon is called in stochastic terms positive dependence among variables, namely
conditional (positive) association (see Holland and Rosenbaum (1986) and Junker and
Ellis (1997) for a detailed description on this topic.) Under the assumption of conditional
association, conditional probabilities are expected to be ordered according to the states
of conditioning variables. Experience says that as the number of conditioning variables
increase, it is more probable that the conditional positive association (CPA) is violated
in the estimates of the conditional probability. What make things more difficult is that
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the estimates from the EM algorithm depends upon the initial values for the estimates
(Wu 1983), which becomes more serious as the model structure gets more complicated
and more variables are involved in the model. This sensitivity of the estimates to the
initial values can be subdued to some level by applying the calibration method of Kim
(2002).

This work was motivated by the need that the estimates satisfy the CPA. Since our
data involve unobservable variables, we applied an EM algorithm, and the model we
considered is a recursive model (Wermuth and Lauritzen 1983) of categorical variables.
QOur main interest in this work is in how the estimates fluctuate during the estimation
process and when we can see if the CPA obtains in the estimates.

2. Notation and terminology

A contingency table is formed by classifying a number of objects according to a set
of criteria and counting the number of objects in each classification. We express this
formally by introducing a finite set V' of classification criteria and for each v € V a finite
set T, of possible levels of these. We often refer to the criteria as variables. The cells of
the table are the elements ¢ = (4,)yecv of the product T of the level sets i € T = X ,ev T,

Data typically appear in two different forms: as a list of |n| objects (s, ...,i™!), where
each entry identifies which cell a given object belongs to, or as a contingency table of
counts n = {n(i)}iez. Here |n| =}, ;n(i). If we introduce the indicator functions

1 ifj=1
0 otherwise,

x5) = {

In|
v=

the counts are given as n(i) = Y., 2, X*(j¥). The table has a dimension equal to the
number |V of variables.

An A-marginal table is for A C V obtained by only classifying the objects according
to the criteria in A, i.e., by only considering the variables in A. It has marginal cells

ia € T4 = Xyeal,. The marginal counts are the quantities n{iq). Again, if we let

D 1 ifja=ia
*al9) = { 0 otherwise,
we have n(ig) = E!ﬂl X4 (5%) = 3¢z n(5)X* (5). For the marginal corresponding to
the empty set we get n(ig) = |n|, the total number of observations. We denote the vector
of expected cell counts by {m(i)}icz and that of the mazimum likelihood estimate of the
mean vector by {7 (i)}iez.

The relationship among the set of classification variables that are involved in a re-
cursive model can be represented by a directed acyclic graph (DAG). A DAG consists of
nodes and arrows (or directed edges). a — b stands for that the state of b is influenced
by the state of a. In this situation, we call node a a parent node of node b and call b a

child node of a. We will denote by pa(v) the set of the parent nodes of v . The expression
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pa(A) denotes the collection of parents in A C V: pa(A) = Ugecapa(a) \ A . The node
which does not have any child node will be called a terminal node, and the node which
does not have any parent node will be called a root node.

3. EM algorithm

Suppose V = AU A is a set of classification variables to the complete unobserved
data, where all the variables in V are binary and A is a set of the observed variables and
A that of those to the unobserved (latent) variables. Furthermore, all the variables of A
are terminal. R

An E-step is implemented according to the expression m(iy )"t = n(ia -:A:E—z.:—g?,—,
where r is the iteration count of the E-and M-steps. Once the E-step is carried out, the

new estimates satisfy M (ia)("*?) = n(ia). An M-step is implemented according to the

)(r)

P N Pl pace
expression M(iy) "+ = |n| [T ev _(——2(:;(“;)(”‘

4. Order of magnitude among the estimates

4.1. After an E-step

In this section, we present two theorems that that provide sufficient conditions for
the order of magnitude among the estimates of the conditional probabilities remain the
same before and after an E-step. Theorem 4.1 is concerned with a terminal node which
is observable, and Theorem 4.2 with the node of a latent variable.

Theorem 4.1. Suppose v(€ A) is terminal and pa(v)(# 0) C A and assume

E[M (/c5|ipa(,,))<r)] E[—"—gﬂL p(ksljpaw))(r)]

Biv ks) (D P $(urks) 7

>1,
v,k . vy y
E[P&]ks)sr ’p(kéhpa(v))(r)} E[p?ﬁj kf;(' ’P(kébpa(v))(r)]

where § = A\ {v} and

q(iv, ké) q(iv, kt5 . r
[ﬁ(—k)(rjm(k&hpa (v)) Z Blio: Fo) (r)p (ksipa()) ™.
ks€Ts VY

Then, ﬁ(ivﬁpa(v))(r) > ﬁ(iv'jpa(v))(r)a it follows that ﬁ(iv]ipa(v))(r+l) > f)\(iuljpa(v))(”’l),

where iy, Ju € Ty with iy # Ju, tpa(v) Jpa(w) € Lpa(v) With ipa(w) # Jpa(v), and the rth and
the (r + 1)th estimates are from an M-step and from the subsequent E-step, respectively.

Theorem 4.2. Suppose v € A and pa(v) N A = 0 and assume
E‘:%k_?(%;p(kAlivvipa(v))( ):l E[%_‘rL);p(kAf]vaJpa(v))( )]

E[ (kA)(r ap(l‘AIvalpa(v))(r)] E[;ﬁ%;ﬁ(kéxliv,jpa(v))(r)]

21,
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where

a(ka) .~ . ( ] qlka) ., . .
E = k tus Ipa(v " = =1 Ny k Lvs tpa(v (r)
plka)® plkalivy ipa(w)) ké;IA p(kA)(r)p( A, ipacv))

Then 1’7\(iv|ipa(v))(r) > ﬁ(ivijpa(v))(r)a it follows that ﬁ(ivlipa(u))(r+l) > ﬁ(iv|jpa(u))(r+l)a
where iy, ju € Ty With iy # Ju, tpa(v), Jpa(w) € Lpa(v) With ipa(v) F Jpa(v), and the rth and
the (r + 1)th estimates ‘are from an M-step and from the subsequent E-step, respectively.

4.2. After an M-step

At an M-step, we maximize the likelihood of a given model based on the estimates
from the preceding E-step, and the resulting likelihood is given by Hvevﬁ(iulim(u))(r),
where 7 is the iteration count at the preceding E-step. Thus we have the theorem below.

Theorem 4.3. ForveV, ﬁ(ivlipa(v))(”‘l) = ﬁ(ivlipa(v))(r), where the left-hand side is
the estimate from an M-step and the right-hand side from the preceding E-step.

In a nutshell, the order of magnitude of the estimates remains the same before and
after every M-step, but this is not necessarily the case as for the E-step. Sufficient
conditions are provided under which the order is maintained before and after an E-step.
So, if the order of magnitude among the estimates is far from its initial status, the order
distortion must have taken place at an E-step. According to Theorems 4.1 and 4.2, we
can see that as the estimates get closer to limits, the order of magnitude in the estimates
is more likely to keep its preceding status. Thus the order is more likely to be distorted
at a relatively early stage of E-steps, as will be illustrated shortly. As a remedy for this,
we propose applying a Bayesian method to the EM algorithm by imposing a Dirichlet
prior on every variable of a given model (Bishop, Fienberg, and Holland 1975, Section

12.2).

5. Illustration

We analyzed a data set of 7 multiple choice items of the Mathematics section of the
Korean SAT that was administered in 1999. We have 7 observed binary variables for
item scores (0 for incorrect answer and 1 for correct answer) and 7 unobservable binary
variables for the states of the knowledge units (0 for a poor state of knowledge and 1 for
a good enough state).

The 14 variables are related as in the left side of Figure 5.1, where an arrow from a
box to a bullet stands for a causal relation between the corresponding knowledge unit
and the test item and an arrow from a box to a box mostly stands for a prerequisite
relationship between the corresponding pair of knowledge units (Mislevy 1994). If an
item can be solved when a test-taker possesses a good knowledge of certain knowledge
units, then the item-score variable is said to be causally related to the knowledge units and
arrows run from the corresponding knowledge-state variables to the item-score variable.
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Code Contents

DK about sets

DK about numbers and equations
DK about plane geometry

PK for inference

DK about one-variable functions

DK about trigonometrical functions
PK for problem recognition

Qm@EoQw»

EX be co de ce e Lo

Figure 5.1: (i) The left figure is a DAG for real data. Bullets are for the item score variables and
boxes for the knowledge states. (ii) The right table is the list of the knowledge units involved in
the model. DK is an acronym of “declarative knowledge” and PK of “procedural knowledge.”

The structure of the relationship among the item-score variables and the knowledge-state
variables is based on the opinions of a group of experts of the test subject. The knowledge
units are listed in the right side of Figure5.1.

To show how the estimates fluctuate during the EM process, we display the values
of P(Xy = 1|1Xp,c,r)™ and ﬁ(Xg =1/X4,5,0)™ in Figure 5.2. For convenience’ sake,
we denote by p0,pl,--. ,p7, respectively, the values of ]3(Xb = 1X(B,c,F) = Z(B,C,F))s
in the order of the configurations of X(p ¢ ry from (0,0,0) to (1,1,1), in Figure 5.2,
and analogously for ﬁ(X = llXA,B,D)("). We can see in the figure that the estimates
fluctuate much more with real data (see the first column of the figure) than with simulated
data (the second column). The order of magnitude in the estimates based on the real
data does not look stabilized until the end of the first half of the process. Notice that
the estimates p2 and p6 fluctuate over a wide range of values during the first half of the
procedure. Such a wild fluctuation is also seen in the estimates based on the simulated
data. This fluctuation may be influenced by the initial values or by the model structure
we choose. When we applied a Bayesian method by imposing a Beta prior (with its
parameters « and 3, o + 8 = 100) on every variable in the model, we could have the
estimates stabilized from the early stage of the process as is shown in the last column of
Figure 5.2.
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Figure 5.2: A time-series-type display of P(Xy = 1/Xp,c,r)™ and IS(Xg = 1|Xa,8,0)".
P(Xy = 1|XB,c,r)"-values are displayed in the first row and P(X, = 1|X5,c,r)"-values in
the second row, where p0,pl,- - -, p7 are explained in the text. The estimates from an EM based
on real data are displayed in the first column, the estimates from an EM based on simulated
data in the second column, and the estimates from a Bayesian EM based on real data in the
last column.
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