The 2nd Annual Conference of the Korean Society for Bioinformatics (KSBI12003)

Finding approximate occurrence of a pattern that contains

gaps by the bit-vector approach

Inbok Lee’,‘ Kunsoo Park!*

! School of Computer Science and Engineering, Seoul National University

“To whom correspondence should be addressed. E-mail: kpark@theory.snu.ac.kr

Abstract

The application of finding occurrences of a pattern that contains gaps includes information retrieval, data

mining, and computational biology. As the biological sequences may contain errors, it is important to find

not only the exact occurrences of a pattern but also approximate ones. In this paper we present an

O(mnk,,/w) time algorithm for the approximate gapped pattern matching problem, where m is the

length of the text, n is the length of the pattern, w is the word size of the target machine, and k_,, isthe

greatest error bound for subpatterns.

Introduction

Given a pattern P and a text 7, the pattern
matching problem is to find all the occurrences of
P in T. The approximate pattern matching
problem is to find all the positions of T where P
appears with at most k errors. The measure for the
errors is the edit distance which means the
minimum number of edit operations to convert
one string into the other, where the edit operation
is one of the following: insertion of a character,
deletion of a character, and substitution of a
character for another one.

In this paper, we want to find the exact

This work is supported by BK 21 Project, IMT
2000 Project AB02, MOST grant M1-0309-06-
0003,

and approximate occurrences of P that contain
gaps. Let T be a string of length n over an
alphabet Y. 7Ti] denotes the i-th character of T.
TTi..j] the
T[T[i +1]..T[j]. The pattern that we want to
find

denotes substring of

from the text T

1 — * * *
18 P=py*) P2 ¥ - Pia (@b P Each

subpattern p, (1<i<I) is a string over the

alphabet 3 and m =Z:=l| P, |+Z:b,. . A gap

*ap 1s a string of consecutive wild cards or
don’t care characters whose length is between a
and 5. We can think of a gap as a distance
constraint between the neighboring occurrences of

the

there is an

subpatterns: that is, if pattern is

P=p,..p, *(a,-,b,») Pin--p; and

193

194

occurrence p; ending at T{j], the occurrences
of Pia should
[j+a+Lj+b+1].

start between

Definition 1. The exact gapped pattern
matching problem is to find all the occurrences
of P from T. In the approximate gapped pattern

matching problem, each subpattern p; has an
error probability r, (0<7 <1) and we allow
k,=| p;|*r, errors for each p, . Then the
problexﬁ is to find all the substrings of T that
match each subpattern p;, with #£; edit distance

and satisfy the gap constraint.

Example 1. Let P=AA4*,; GC*,, TT and
T = GCAATTGCACTTC . Then we can find an

exact occurrence of P from 7. See Figure 1.

Figure 1: Finding P = AA*,; GC*5 TT from
T = GCAATTGCACTIC .

The application of this problem includes

information retrieval, data mining and
computational biology. We will focus on the latter
one. Especially, the main application of the
gapped pattern matching is to find a relationship
between the protein sequences that we already
know their function and the new sequence whose
function we do not know. In some cases, we can’t
find the relationship by overall sequence
alignment. We can find it by searching for motifs

from the unknown protein sequence. A motif is a

substring or a small similar subsequence that is
common to many of the strings in the set.
Recently people are working on building huge
protein databases including PROSITE [2]. If the
new sequence contains a motif that can be found
from some protein family, then we can conjecture
that it may have the same function as the protein
family does. As the biological sequences may
contain some errors due to various reasons, it is
natural that we want to find not only exact
matching occurrences of the pattern but also
approximate one.

In this paper we show an algorithm for
the approximate gapped pattern matching problem
based on the bit-vector approach. Our algorithm is
based on Navarro and Raffinot’s bit-vector
approach [5], but their algorithm has only one
error bound & for the whole pattern P. Hence, it is
possible that most errors occur in one subpattern.
If we consider the application in biology, it is
more appropriate to have an error bound k; for

each subpattern p, {6].

Previous works

The simplest approach is to represent the gapped
pattern as a regular expression and find the
occurrences by regular expression matching. For
example, a pattern LIV *,,) LM that contains a
gap *;, can be represented as a regular
expression LIV *(*|£)LM . Then we use the
well-known regular pattern matching algorithm,
that is, create a nondeterministic finite state
automata (NFA) and either convert it into a
deterministic finite state automata (DFA) or just

use the NFA. See [3] for more details.

This approach is too general, as the set
of pattern that contain gaps is a proper subset of
strings that can be represented by the regular
expression, Furthermore, finding the approximate
matching occurrences of a regular expression is
difficult and time-consuming. So we need a more
specialized approach for the gapped pattern
matching problem.

Navarro and Raffinot [5] presented an
O(mn/w) -time algorithm for the exact gapped
pattern matching problem with bounded size gaps
and an O(kmn/w) -time algorithm for the
approximate one, where k& is the number of errors
and w is the word size of the target machine.
Their algorithm uses the bit-vector simulation of
NFA. We will discuss it later.

Akutsu showed an O(m'nlogn) time

algorithm for the approximate gapped pattern
matching problem in [1] where m'= Z:ﬂl pil It

considers a gap *.,, as a character, where
Navarro and Raffino’s algorithm considers it as b
characters). It uses a combination of a balanced
the traditional dynamic

search tree and

programming approach for the approximate
pattern matching problem. The error bound £ is
for the whole the whole pattern P, which is the
same as Navarro and Raffinot’s.

Lee, Iliopoulos, Apostolico and Park
showed an O(nl+m') -time algorithm for the
exact gapped pattern matching problem and an
O(m'n) -time algorithm for the approximate one

[4]. They first proposed an error model where

each subpattern has its own error bound.

Algorithm

Navarro and Raffinot’s approach

Navarro and Raffinot proposed a bit-vector
approach for the gapped pattern matching
problem. First, build the NFA for the pattern P.

For example, assume P=LIV*,, LM . Figure

2 is the NFA for P.

-

€
L 1 v L ~M
O2a02202,0220220

Figure 2: The NFA for P =LIV*,, LM

Then they simulate this NFA with a bit-vector
D=D,..D,. There is a one-to-one relation
between each bit of D and each state of the NFA:
if the NFA is at the state 7, then the i-th bit of D is
1. Note that since an NFA can be at more than one
state, there may be two or more 1’s in D.

Originally D=0". The next step is to build the
bitmask B. The i-th bit of B[x] is 1 ifand only if

B=x : in our example,
B[M1=1011001 , B[L]=0110011 ,
B[M]=1011001 , and B[M]=1011001 . (Note
that * is a “wild card” which matches any

character in Y).
Scanning T from left to right (7} is the

current character.), we update D with the

following equation.
D'« ((D<<1)|0™") & BT}] Q)

Equation 1 is straightforward. To reach the state i
with the current character T;, first the NFA

should be at the state j—1: that is, the (i -1)-th

195

196

bit of D should be 1. If the transitive function
6(i-1T;)—>iis defined and the i-th bit of
B[T;] is 1, equation 1 sets the i-th bit of D to 1.
And the NFA should be always be at the state 0:
the bitwise OR operation against 0™l guarantees
this condition. '

In the above example, if the NFA is at
the state 3, by the e-transitions, it should be at the
state 4 simultaneously. To handle these &
transitions, we use two additional bitmasks. A
gap-initial state is the state where an &-transition
leaves. We create a bitmask [for the gap-initial
states: in the above example, [= 00001000
since the state 3 is a gap-initial sate. A gap-final
state is the last state reached by an g-transition.
We create a bitmask F for the gap-final sates: in

F =00100000 since the

the above example,
state 5 is the gap-final state. Then after updating
D, we simulate by the following equation.

D'« D|(F-(D&D)&~F) 2)

First we check whether the NFA is at the gap-
initial states by computing D&I . If so,
computing (F—(D &I))&~ F yields the states
reached by the e-transitions. If not, by the bitwise

AND operation against ~F , we remove
undesired 1’s.

For the approximate gapped pattem
matching problem, they duplicate the above NFA
k times and link the states by the following rules.
Figure 3 is an example.

® The downward arrow via Y means an

“insertion”,
® The diagonal arrow via 2 means a

“substitution”.

® The diagonal arrow via £ means a

“deletion”.

RowD

Lenor (D))

Figure 3: The NFA for P = LIV *, LM with

k = 2 edit distance.

We keep k£+1 words D,,D,,...,D, for
representing the rows of the NFA. We update D'
from D,, D, and D', by the following

equations.

D'« (D; <<1) & B[T;] 3)
D'« D|D,|
m-1 ' (4)
(D <D0 | (D', <<1)
Dy« D|(F-(D',&D))& ~ F) &)

The first and last equations are easy to understand.
The middle one is slightly harder. D, means
the vertical via
S (insertions). (D, <<1)|0™'1

diagonal arrows via 2, (substitutions). D', <<1

arrows
means the

means the diagonal arrow via £ (deletions).

Our algorithm

As we mentioned above, we deal with the
approximate gapped pattern matching problem
where each subpattern has its own error bound.

Moreover, the gap constraint must be conserved:

we do not allow errors in gaps. If we need to
allow k& errors in gaps, we replace the gap
constraint *, with *, .., . (In gaps, only
insertions and deletions are important while
substitutions are not.) We build short NFAs for
each subpattern p,, duplicate it k; times, and
link the states by the same rules as we did in
Navarro and Raffinot’s algorithm. Finally we link
these NFAs by the gap constraint. Figure 4 is an
example. Note that the resulting NFA is not in a

rectangular shape, but in a rather complex one.

..........

Orphan states

P

Figure 4: The NFA for P=LIV*, LM with
ky=2and k,=1.

Before describing our algorithm, we
first define the orphan states. An orphan state is a

state where no transition reaches. The bits

representing these orphan states should be set to 0.

To do so, we create k+1 bitmasks O,,0,,...,0, .

The i-th bit of O; is set to 0 if the state i of the
row j in the NFA is an orphan state, and 1

otherwise. In the above

o, =11111111 , ©,=11101111 ,
0, =00001111 . Then equation 4 should be

example,

and

modified as follows.

D'« (D';| Dy |
(D &0) <<D[0™ D])
(D' &0,) << 1)) & O;
The meaning of equation 6 is as follows.
® After equation 3, we set the orphan
states to 0: D", &0, .
® To handle the vertical arrows via X
(insertion): D, &O,,.
® To handle the diagonal arrows via 2.
(substitutions):
(D, &0,)<<)|0™') & O, .
® To handle the diagonal arrows via ¢
(deletions): (D', &0,)<<)&O0;.

Finally, calculating the bitwise OR operation

among them and applying the de Morgan’s law

yields equation 6.

We need to handle the transition related
to the gaps. If we reached one of the state 3’s of
each row in Figure 4, we encountered an
occurrence of LIV within 2 errors. Then we
proceed to the next states. To do so, we create a
temporary variable G: initially, G=0" . It
maintains the information whether the NFA
reached one of the gap-initial states. We update G

with the following equation.

G« G|(D',&0, &) %)

The whole algorithm is as follows.
1. kg, =max 4k (I is the number of
subpatterns.).
2. Create the bitmasks /, F, and O.
3. Set D,«0". (0<i<I)
Scan the text T from left to right (7; is

the current character) and do the

197

198

following.
A. Set G=0".
B. For i=0},.k,, , compute the
following equations.
D'« (D; <<1)& B[T;]
D'y« (D';| D,y l
(D, &0;) << D] 0™ D)
(D', &0,) << 1)) & O,
G«G|(D;&0, &1
C. Compute the gtransitions in the
row 0.
D'y« D',|(F-G)&~F)
5. Report the j-th position of T as an
occurrence of P if one of D';’s MSB is

1.

Time complexity

The algorithm consists of the preprocessing (step
1-3) and the main algorithm (step 4-5). It takes
O(m|Z]) time for creating the bitmask B,
O(mk _,) time for O and D, and O(m) time for
Iand F. 1t is easy to show that the main algorithm
runs in O(mnk ./ w) time, where n is the length
of the text, m is the length of the pattern, and w is

the word size of the target machine. (Compare

with an O(mnk/w) -time algorithm in [5], where

k=Y k, .Itfollows that k,,<k.)

Conclusion

We showed an O(mnk, . /w)-time algorithm for

the approximate gapped pattern matching problem.

It has a better time complexity than the algorithm
in [5]. This algorithm can be useful when we

search the protein databases.

Acknowledgements

We would like to thank Costas Iliopoulos

(Department of Computer Science, King’s
College London), Sung Gyoo Park and Guhung
Jung (School of Biological Science, Seoul
National University) for their kind help.

This work is supported by BK 21
Project, IMT 2000 Project AB02, MOST grant

M1-0309-06-0003.

References

[1] T. Akutsu, Approximate string matching with
variable length don’t care characters, JEICE
Transaction on Information and Systems,
1996, E79-D 1353-1354

[2] L. Falquet, M. Pagni, P. Bucher, N. Hulo, C. J.
Sigrist, K. Hofmann, and A. Bairoch, The
PROSITE database, n 2002,
Nucleic Acids Research, 2002, 30:235-238

[3] D. Gusfield, Algorithms on Strings, Trees, and

its status

Sequences, Cambridge University Press,
1997

[4] 1. Lee, A. Apostolico, C. Iliopoulos, and K.
Park, Finding approximate occurrence of a
pattern that contains gaps, Proceedings of the

Workshop on

03),

Fourteenth Australasian
Combinatorial Algorithms (AWOCA
2003, 89-100
[5] G. Navarro and M. Raffinot, Fast and simple
character classes and bounded gaps pattern
matching, with protein
searching, Proceedings of RECOMB 2001,

2001, 231-240

application to

[6] G.G. Sutton, O. White, M. D. Adams, and
A.R. Kerlavage, TIGR Assembler: a new tool
for assembling large shotgun sequencing

projects, Genome Science and Technology 1,
1995, 9-19

199

	SMJBA4_2003_y2003m10a-0228.tif
	SMJBA4_2003_y2003m10a-0229.tif
	SMJBA4_2003_y2003m10a-0230.tif
	SMJBA4_2003_y2003m10a-0231.tif
	SMJBA4_2003_y2003m10a-0232.tif
	SMJBA4_2003_y2003m10a-0233.tif
	SMJBA4_2003_y2003m10a-0234.tif

