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Abstract

This paper describes a genetic algorithm for predicting RNA structures that contain various
types of pseudoknots. Pseudoknotted RNA structures are much more difficult to predict by
computational methods than RNA secondary structures, as they are more complex and the
analysis is time-consuming. We developed an efficient genetic algorithm to predict RNA

folding structures containing any type of pseudoknot, as well as a novel initial population

method to decrease computational complexity and increase the accuracy of the results. We also

used an interaction filter to decrease the size of the possible stem lists for long RNA

sequences. We predicted RNA structures using a number of different termination conditions and

compared the validity of the results and the times required for the analyses. The algorithm

proved able to predict efficiently RNA structures containing various types of pseudoknots in

long nucleotide sequences.

Introduction
The prediction of an RNA structure with a

pseudoknot using computational methods
requires much computation. Predicting the
most stable structure with minimal free
energy from an RNA sequence is an
optimization problem {1, 2, 3]. Computational
methods for predicting RNA  structure
generally make use of two algorithms, one
combinatorial the other recursive. The
combinatorial  algorithm first creates an

inventory of all possible stem lists that can
be formed by a given RNA sequence, and
the

then determines the combination with

lowest free energy. This algorithm has the
advantage that it can include pseudoknot
but the

structures increases immensely with sequence

structures, number of possible
length [4, 5]. The recursive algorithm finds
the the

sub-fragments of a sequence.

lowest free energy structure from
It makes a
systematic search of all sub-fragments for the
lowest free energy structure containing at
least one base pair. The first sub-fragments
considered are those capable of forming a
hairpin loop closed by a single base pair. So
in a first pass it will find the lowest free

energy structures for all pentanucleotides in
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the sequence. This method always finds the
structure with least free energy, but it does
not identify structures such as pseudoknots
because of their computational complexity.

(GA) is an

optimization procedure that implements the

A genetic algorithm
mechanism of biological evolution. It begins
with a set of solutions called populations.
Solutions are then taken and used to form a
new population in the hope that the new
population will be superior to the old one.
They are selected to generate new solutions
according to their fitness; the fitter they are,
the they
reproduce. This procedure is repeated until

more  opportunities have to
some specified condition is satisfied.
GAs

empirically proven to provide robust searches

have been theoretically and
in highly complex and uncertain spaces, and
they are finding widespread application in
commerce, science and engineering. They are
computationally simple and powerful search
methods, and many workers have used them
RNA

they have been used to seek

to predict structures and sequence
alignments;

optimal and sub-optimal secondary RNA
structures {6, 7] and to simulate RNA folding
pathways [8, 9].

algorithms
have RNA

structures that include pseudoknots [10, 11].

Massively parallel genetic

been employed to predict

However the structures predicted contained
only H (Hairpin)-type pseudoknots and the
computations were extremely complex as they
used randomly generated initial populations.
Dynamic programming algorithms, also used
RNA

[4] again could only predict

to  predict structures  including
pseudoknots
structures with H type pseudoknots, and only
from short RNA sequences.

We have developed a GA that is able to

predict efficiently RNA structures containing
several types of pseudoknots. To predict such
structures we derived an approximate energy
model for the different types of pseudoknots
and developed a topology decision algorithm.
To decrease computational complexity, we
introduced a long interaction filter and new
initial populations methods. We compare and
analyze the results predicted by various initial
population methods, and also adjust the GA
parameters to improve the accuracy of the
predictions.

In the section that follows, we describe
the GA and outline the new initial population
the The

implementation of the analysis and the results

method and genetic  parameters.
obtained are given in the following section.
Some predicted RNA structures are presented
in visual form and their accuracy assessed.
General lessons and conclusions are described

in the final section.

Prediction algorithm
The prediction algorithm for RNA structures
with pseudoknots is composed of two stages:
preprocessing, and evolution of the GA. The
preprocessing steps reads the RNA sequence
and generate three stem pools. From a
covariation matrix they generate a list of all
possible stems with a minimum of three base.
the

energy of each stem in the stem lists and

pairs. They further calculate stacking
sort the stems in increasing order of energy
values. The list of these stems becomes what
we call the fully zipped stem pool. Since the
number of possible stems increases immensely
with length we
the

decrease their size. First, consecutive wobble

sequence remove  some

irregular  stems from stem pools to

pairs at either end of a stem are removed

because they are not sufficiently stable. The



stacking energy of each stem is then
recalculated and irregular stems are removed;
these are stems consisting of 1 or 2 base
with These

procedures generate the second stem pool that

pairs too distant interactions.
we call the partially zipped stem pool. Finally
we generate the pseudoknot stem pool by
finding all possible pairs of stem that can
form a typical H type pseudoknot. At this
the number of

length of the

we consider only
connecting the

pseudoknot stems. The partially zipped stem

stage,
loops and
pools and pseudoknot stem pools are together
used to predict RNA structures.

These

populations that are allowed to evolve using

procedures produce the initial
the genetic operator. In using the GA to
predict RNA the

represented as

structures, structures are
genome types using binary

string genome expression,

Initial population
It is
randomly when using a genetic algorithm.
method

usual to generate initial population

However this is not efficient for
predicting RNA structures because there are
many pairs of stems that cannot coexist in a
structure. These stems often share common
base pairs or have complex topology, and as
a result, randomly generated populations tend
The

presence of these impossible structures makes

to be produce impossible structures.
the prediction of RNA structures inefficient.
We therefore developed a heuristic method
for generating the initial populations.

To generate the initial population, we
the

pools, and test the topology of the other

first select a reference stem in stem

stems in stem pools. Topology tests are

composed of 2 steps: an overlapping test and

crossing test. The overlapping test checks if

the stems share base pairs with the reference
and the crossing test checks if the
the

reference stem and prevents the algorithm

stem,

stems are crossed with respect to

from generating complex structures. Every
the

reference stem simultaneously. The complex

stem in stem pools 1is selected as

types of pseudoknots and details of the
topology tests are described in the next
section.

Two choices have to be made in
developing the heuristic initial population.

First, as the pseudoknot stem pool is essential
when predicting RNA
the reference

structures containing

pseudoknots, stem pool can
consist of the pseudoknot stem pool on its
own or that pool together with the partially
zipped stem pools. The second choice to be
made concems how many stems are included
in an RNA structure. One approach is to
include all the stems that pass the topology
test with the reference stem; the other is to
insert only a limited number of these stems
in order not to generate complex structures.
is decided

heuristic manner by repeated testing.

The number to include in a

We have compared the results obtained
using the four initial population structures
derived from combining these alternatives
(Table 1). We

populations by the random method, but the

also  generated initial
predictions obtained were not good enough to

compare with the others.

Topology tests

Topology tests are performed to discriminate
between the types of loop elements (stems) at
the evaluation stage, and to avoid impossible
or complex structures at the initial population
They types. The

overlapping tests and crossing tests are carried

stage. are of three
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Table 1. Initial population methods

Ni
Method Reference stem pools umber
of stems
Partially zipped stem
1 pools with pseudoknot  no limit
stem pools
Partially zipped stem
2 pools with pseudoknot  limit
stem pools
3 Pseudoknot stem pools no limit
only
4 Pseudoknot stem pools limit
only

out at the initial population stage to avoid
impossible structures, and the nesting test is
performed to decide on the loop types of the
stems at the evaluation stage. The latter test
checks whether the reference stem contains
other nested stems, and is carried out when
the reference stem has more than two stems.
In effect, it determines whether the topology
of the reference stem corresponds to multiple
loops, or to nested internal or bulge loops.
Figure la gives an example of multiple loops

and figure 1b of nested loops.

i N

r—

(a) A multiple loop

'r
(b) A nested loop

Figure 1. Example of nested test

[ -

Genetic parameters
of GA in

depends on

The performance solving

optimization problems several
genetic parameters. These are: the type of
probability of each

function, and the

genetic  operator, the

operator, a fitness

124

termination conditions.

Crossover and mutation operators are the
two basic types of operator. We. use a
one-point crossover operator that selects one
crossover point at random to alter the
parental chromosomes, and the crossover is
defined

probability. The mutation operator selects bits

performed with a crossover
of the genome at random and inverts them,
and mutation is also performed with a
defined probability. The crossover operator
tends to enable the evolutionary process to
move toward promising regions of the search
space, and the mutation operator is introduced
to prevent premature convergence to local
optima; it does so by randomly sampling new
points in the search space. We use a high
crossover probability and a low mutation
probability.

The thermodynamic free energies of
RNA structures are used to measure the
fitness of individuals in the population. To
calculate free energy we use linked list data
structures. The node of the linked list is the
stem index value of the stem pools. Because
the node of the linked list is sorted by order
of first index, the loop types of each stem
can be easily decided using the topology test.
The appropriate energy model is then applied
to regular secondary structure elements and H
type pseudoknots.

Various types of pseudoknots can be
evolution of the

generated during the

algoritm. In the case of pseudoknots

composed of pseudoknot elements and
secondary structure elements, thermodynamic
free energy can be approximated by current
energy models [12]. However for some
complex types this is not possible. These
complex types are defined in Figure 2, while

Figure 3 displays the types of pseudoknots



whose free energy can be calculated, and
Figure 4 provides an example of the free

energy calculation involved.

=t 1 |

Figure 2. A complex pseudoknot
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Figure 3. A complex pseudoknot that could

be calculated
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Figure 4. An energy calculation
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The termination condition is wused to
determine whether a genetic algorithm s
finished. Since the execution times and

accuracy of a prediction algorithm depend on
the termination condition, its choice is very
important. Either the number of generations,
or convergence, can be used as termination
condition. Convergence refers to the similarity
of the objective scores obtained by comparing
the population average score with the score
of the best individual in the population: if the
threshold

value, the GA stops evolving. If number of

population average. is within a
generations is used as termination condition, it
is difficult to determine a number that is
suitable for all RNA sequences: a relatively
low number of generations is required for
short RNA sequences, whereas large numbers
are generally required for long sequences.
Convergence may be used for all RNA
sequences, but the accuracy of prediction is
poor because populations tend to converge

early. We have predicted structures using both

termination conditions and have compared the

results.

Results and Discussion

The prediction algorithm was implemented
into a program called PseudoFolder with C++
builder 5.0 on a 1.61 GHz Pentium 4 PC

with 256 MB memory. PseudoFolder predicts

ten structures because the variety of
predictions is also important. PseudoFolder
integrates the visualization program

PseudoViewer [13, 14], so the user can
immediately see the predictions in graphical
and change the prediction

form, can

parameters easily using the graphical user
interface.

We have used PseudoFolder to predict
include pseudoknots

several structures that

from their sequences. Some of the structures
were already known. Figure 5 shows the
known structure of TMV RNA and Figure 6
shows the structure of ORSV RNA [15, 16].
These known structure contain either one or
two irregular stems as well as irregular pairs
that

wobble pairs. As these stems could not be

are neither Watson-Crick pairs nor
included in our predictions because they were

not generated during preprocessing, we
modified some bases of the test sequences in
order to find all the stems represented in the
known structures.

We predicted structures five times for
each sequence and used average values for
the

the

statistical analysis, and we compared

accuracy and execution times of
predictions. The accuracy of predictions is
defined as the percentage of the known
structure elements in the predicted structures,
and execution times refer to the time taken

by the evolution stage. Figure 7 shows the
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Figure 6. The known structure of ORSV



accuracy of prediction for TMV RNA using
convergence as termination condition, and
Figure 8 gives the execution times with the
same termination condition. The accuracy of
prediction was poor. For comparison, Figure 9
and 10 obtained with

number of generations (100) as termination

shows the results
condition. Figure 11 presents the best result
obtained for TMV by method 4 with the
same termination condition. Thirteen of the
predicted stems coincided with those of the

known structure and although one stem was

Execution time

1 2 Method 3 4

Figure 8. Execution times of predictions for

TMV RNA with convergence as termination

) ) o ] condition
different it nevertheless was similar in
topology to the known structure. Variation of
execution times is small with number of 90 Correctess
generation as termination condition. And we 80
~70
have been able to decrease execution times 2o
. . . "]
when using convergence as termination éf)o
s . .. 040
condition by a method which limits the £
o]
number of stems. 2
10
0
Correctness 1 2 Method 3 -4
56
555 ) o
55 Figure 9. Accuracy of prediction for TMV
54.5 RNA using number of generations as
54

Correctness (%)

1 2 Method 3 4

Figure 7. Correctness of prediction results for
TMV RNA using convergence as terminal

condition

termination condition (n=100)

120 Execution times

[+:]
o

times (sec)
5 2

N
o

o

1 2 Method 3 4

Figure 10. Execution times of predictions for
TMV RNA using number of generations as
termination condition (n=100)
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Figure 11. The best prediction for TMV RNA using method 4

and number of generations as termination condition (n=100)
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4 and the number of generations as termination condition
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Figure 13. Prediction for ORSV RNA using method 4 that

includes various types of pseudoknot

Correctness

1 2 Method 3 4

Figure 14. Accuracy of prediction for ORSV
RNA
termination condition (n=100)

using number of generations as

The known structure of ORSV RNA has
28 stems and 8 H type pseudoknots with 3
non classical pseudoknots. The prediction in
figure 12 has 18 stems that occur in the
known structure and 6 H type pseudoknots.

13 another its

accuracy is lower than that of figure 12, but

Figure shows prediction:
it includes a variety of types of pseudoknots.

In figure 14, we used 100 generations as
termination condition. However, the average
accuracy of prediction was not satisfactory
because ORSV has more bases and stems
than TMV RNA. We therefore repeated the
prediction with 300 generations as termination
the

shown in figure 15. We also predicted a very

condition, and improved accuracy is
similar structure using method 4. Figure 12
shows the best prediction result obtained for
ORSYV RNA using method 4 and 300

generations as termination condition.
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Figure 15. Accuracy of prediction for ORSV
RNA
termination condition (n=300)

using number of generations as

For tests of long RNA sequences, we
attempted to predict the optimal structure
including pseudoknots using PseudoFolder and
a dynamic programming algorithm. However,
the dynamic programming algorithm failed to
predict the optimal structure because of
computational complexity. We cannot therefore
guarantee that our prediction algorithm will
but

predict pseudoknot-containing structures similar

predict the optimal structure, it will
to the known structure.

The accuracy of predictions depends on
many parameters of the genetic algorithm
including the initial population method, the
control parameter of the genetic operator, the
probability of the crossover and mutation
the

common practice

operators, and termination  condition.

Although it is
randomly generated initial populations with

to use

GA, such randomly generated initial

populations proved to be not good enough
for RNA structure prediction because there
were many stem pairs in the stem pools that
could not coexist in a structure. Figure 16
shows the number of stems which overlapped
with the known TMV RNA

structure. More than 30 stems in the stem

stems of

pools overlapped with the first stem at the 5'

end of the known structure. When we used
the

prediction - contained overlapping stems and

randomly generated initial populations,

complex structures. In contrast, our initial

population method generated simple and stable

structure elements capable of evolving.

# of overlapped stens

8 8

3

5oV ;%Eedgterr
e |

# of overla
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sterrs of known structure (5->3)

Figure 16. The number of overlapping stems
in TMV RNA

Anther important parameter affecting
prediction  accuracy is the termination
condition, which also  determined the

execution times with the prediction algorithm.
For short RNA sequences including simple
pseudoknots and secondary structure elements,
convergence of population can be used as
but long RNA

sequence only number of generations is useful

termination condition, for
for prediction, and the number of generations
needed increases with the length of the RNA
sequence. As a large number of generations
decreases the effectiveness of prediction for
short RNA sequences it is difficult to define

the number of generations which satisfies

accuracy and effectiveness for all RNA
sequences.
In view of these considerations we

decided to use number of generations as
default termination condition to increase the
accuracy of the predictions. For short RNA

sequences, the user can easily modify the



termination  condition and  the initial
population method using the graphical user
interface. The use of new initial population
method not only improves the accuracy of
prediction but also saves execution times, and
we have been able to predict structures with
similar topology to known structures using the
novel algorithm.

We are currently attempting to develop
an algorithm that will decide the optimal
control parameter for the GA automatically
the RNA Although the
accuracy of prediction was increased by our
still

elements that differ from the known structure.

from sequence.

approach it generates many structural
More refined energy models of the various
pseudoknot elements are required to increase
the accuracy of prediction We intend to test
our prediction algorithm with many more
RNA

performance.

sequences and to improve its
We also plan to develop a

web-based application program.
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