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enhancement

Abstract speech approaches.

Additionally,

In this paper, the combinations of speech

enhancement techniques are experimented.
Specifically, the spectral subtraction, KLT based
comb-filtering, and their combinations are applied to
the AuroraZ database. The results show that
recognition accuracy is improved when KLT based

comb-filtering is applied after spectral subtraction.

1. Introduction

The ETSI STQ-AURORA DSR Working Group
Aurora has initiated the standardization of front-end
for Distributed Speech Recognition (DSR) where the
speech analysis is done in the telecommunication
terminal and the recognition at a central location in
the telecom network [1]. The framework for the
performance evaluation of speech recognition
systems under noisy conditions was prepared [2]
and various methods were proposed (3, 4l
Robustness can be achieved by an appropriate
extraction of robust features in the front-end and/or
by the adaptation of the references to the noise
situation. In this paper, we describe spectral
subtraction and Karhunen-Loéve transform (KLT)

based adaptive comb-filtering that both belong to

cepstral mean subtraction is incorporated.

This paper is organized as follows. In section 2,
the noise reduction methods used in the experiments
are described. In section 3, the experimental results
are shown. Finally, the conclusions are given.

II. The enhancement methods

The Aurora2 front-end is a cepstral analysis
scheme where 13 Mel frequency cepstral coefficients
(MFCCs), including the coefficients of order 0, are
determined for a speech frame of 25ms length [(2].
The frame shift is 10 ms. In the experiments, the
spectral subtraction and KLT-based comb-filtering
use several parameters which do not necessarily
coincide with those of the front-end.

For the convenience of the experiments, the
spectral subtraction and KLT-based comb-filtering
are implemented being separated from the Aurora2
front-end, which means that the outputs of each
method are raw speech signals, and they are again
the input of the Aurora2 front-end. In case of using
spectral subtraction and KLT-based comb-filtering
in sequence, for example, the output of the spectral
KLT-based
comb-filtering and the output of KLT-based

subtraction is the input of
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comb-filtering becomeés the input of the Aurora2
front-end.

2.1 Spectral subtraction

Processing of the spectral subtraction is done on a
frame-by-frame basis in frequency domain. It is
mainly composed of two phases. The first phase is
the calculation of the noise and the second is noise
subtraction. The frame length and the frame shift
are the same as in the AuroraZ. Hanning window is
applied. Let S,(w,#H denote be the short term fast
Fourier transform of input signal y(n) at the t-th
frame. The estimator of the clean speech is given
by
| $,(w, ) |=max©,] S,(w,® |—a S,(w,d P (D
where S,(w,?) is the estimated noise. Noise is
estimated from the non-speech frames of input
signal. If the current frame is determined as noise,
noise is adapted by
| $,(w,d |=4 S,Gu,t—1) |+1—-D| S,(w, 9 I.

(2)

If the current frame is speech, the previous noise 4

is used. Detection of speech pauses is done simply
by comparing the power of the current frame with a
threshold that is the power of noise multiplied by a.
If the power of the current frame is larger than the
threshold, the current frame is considered as speech.
The initial power of noise is calculated from the
first segment of the input signal. The estimated
clean speech is generated by the inverse FFT.

2.2 KLT-based comb-filtering

A  signal subspace approach for  speech
enhancement was suggested by Ephraim and
Van-Trees (5]. This method decomposes noisy
speech into its components along the axes of a
KLT-based vector space of the clean speech [6]. In
this method, a block of data is used to estimate
noisy speech covariance matrix. Then, an eigenvalue
decomposition is applied to perform KLT. This
approach requires repeated eigenvalue decomposition
KLT-based

comb-filtering, a vector of the input signal is

that consumes . much time. In

composed of the samples separated with the pitch
period that is determined at the current frame.
Speech enhancement is performed by scaling each
channel output of the quadrature comb-filter and
reconstructing the speech signal from the scaled
outputs [7]. This processing reduces the dimension
of the covariance matrix of the input vector and the
load of matrix computation.

In KLT-based comb-filtering, each sample of the
clean speech signal X(# of the t-th frame is
reconstructed from the estimation of
(2T+1)-dimensional vectors X ,(¢,7) at the t-th
frame, where
X, (t )= (((t—T-DK+3), ..., x((t+ T-DK+)) T

(3)
and i is from 1 to L which is the frame length.
Speech samples and frames are shown in Fig.1.

speech samples

DK+ (-DK+1 (t-DK+1 tK+1 (t+1)K+1

el ple—bie
SR

<>

current frame (length: L)

Fig. 1. Speech samples and frames

Assuming that noise is additive, we have the
noisy input signal:
Y,(t,d= X,(t,)+ N,(¢,9) (4)
where N,(¢,7) is (2T+1)-dimensional noise vector.
Now, let H be a (2T+1) x (2T+1) linear estimator
of clean speech vector as follows:
X,=HY,. (5)
The error signal obtained in this estimation is
given by
r=X,~- X,=(H-D X, *HN,=r,+r, (6)
where r,=(H-1) X, represents signal distortion
and »,=H N, represents residual noise [5]. Define

the energies of signal distortion &2 and residual

noise € 4 , respectively as follows:

=tE{ r,r N=tE{(H-D) R, (H-DT) )]
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and
el=tE{r,r N=0E{HR,HT) ®)
where R, and R, are covariance matrices of clean
signal and noise vector, respectively. Now, assuming
R, and R, are provided, the linear estimator is
obtained from
ml? Y
subject to: —l]?e_f,s o

9

2
%
2

n

where o2 is a positive constant. H is a stationary
feasible point if it satisfies the gradient equation of
the Lagrangian

Ly(H.p)="et+u( €}~ Ko (10)
and
p( e2—Ko?)=0 for =0 an
where ¢ is the Lagrange multiplier [5].
From v 4zL(H,¢#)=0 and (7, 8), we obtain:
H=R,(R,+u R, (12)
Now, let the eigenvalue decomposition of R, be
defined as follows:

R=UA,UT (13)
where A, is a diagonal (2T+1) x (2T+1) matrix
that contains clean signal covariance matrix
eigenvalues and U contains its eigenvalues. U is
called the inverse KLT and the unitary U7 is called
KLT.

Substituting (13) in (12), we obtain:
H=UA (A +pUTR,0 ' UT. (14)

Assuming that noise is white, R,,'E A, , where

A, is the variance of white noise. From this

assumption, we can rewrite the estimator as

H=UGUT (15)
where
G=diag( g (1), g,2),..., g:/(2T+1)), (16)
(h=—Px
ERVETITILR,

Hence, the signal X,=H Y, is obtained by
applying KLT to the noisy signal, appropriately
modifying the components of KLT U7 Y, by a

gain function, and by inverse KLT of the modified
components.

White noise was assumed in the derivation of the

estimator of clean signal. In real environments,
however, noise is not white and is difficult to
estimate. Hence, we assume a more realistic
approximation for noise model as follows:

2 J 5 M m Al 5 I ma )
on.t= L L (17)

where

mi=arg T (U, 919 a)

=1

min
P i) WO ;21 [m, 7]*)
and
Um,j)= m™element of UT Y (7). (19)

Namely, the noise is calculated from the two low

square averages of the co_efficients that are obtained
from UT Y,(t,7). Before it is used for the gain
function, ¢ ? is adapted by

0i=01.0-No’ +ici,. (20)
Using ¢ ? the gain is calculated as follows:

G=diag( g,(1), g2, ..., g,(2T+1)), (21)
ol

o
¥ [m AE/L

r

g:+(m)=max(0,(1-

III. Experiments

The experiments used the multi~condition training
HMMs trained in the manner described by HTK 20
mix configuration of the Aurora2 tasks.

First, spectral subtraction and KLT-based comb-
filtering were each experimented. Table 1 shows the
word error rates and improvements obtained by
spectral subtraction. Table 2 is the results of
KLT-based comb-filtering. Next, the combinations
of two methods were experimented. Two kinds of
combinations were experimented. One is the
application of KLT-based comb-filtering after
spectral spectral
subtraction after KLT-based comb-filtering. Table 3
and 4 show the results. KLT-based comb-filtering

subtraction. The other is

after spectral subtraction shows better performance
than others. In the final experiment, cepstral mean
subtraction was incorporated (Table 5). It was
applied after spectral subtraction and KLT-based
comb-filtering.
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Table 1. Aurora 2 reference word error rates,
spectral subtraction word error rates and the related
relative improvements

pre——

Set 8 | Set C-F:Overal
12.78%15.44%{42.87%

9.70%
36.22%1{18.00%

SetA | SetB |
8.52%]11.59%
31.34%]16.02%

Table 3. Results of KLT based comb-filtering after
spectral subtraction

SetA ] Bet8

7.41%| 8.46%
42.21%]42.68%

Table 4. Results of spectral subtraction after KLT
based comb-filtering.
. SetA | SetB | SelC | Oy

ord Err. Rate | 8.69%[12.02%
Rel Imp. 28.11%| 9.37%

Table 5. Results of Spectral subtraction, KLT based
comb-filtering, and cepstral mean subtraction.

- SetA | SetB | Sat
Word Err_Rate | 6.63%]| 7.23%
Rel imp, - 49.87%|52.89%

IV. Conclusions

In this paper, we applied the spectral subtraction
and KLT-based comb-filtering together to the
Aurora 2 database to improve the recognition
performance. In the experiments, KLT-based
comb-filtering after the spectral subtraction shows
better performance than the spectral subtraction
only, KLT-based comb-filtering only, and the
KLT-based

comb-filtering. When the cepstral mean subtraction

spectral subtraction after
is incorporated, performance is improved a litter
more. In the spectral subtraction, the parameter
values were experimentally chosen. In KLT-based
comb-filtering, the parameter values were not
optimized fully. Hence, performance improvement

may be expected with the optimization of the

parameter values.
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