Proceedings of the Korea Multimedia Society Conference (한국멀티미디어학회:학술대회논문집)
- 2003.05b
- /
- Pages.126-129
- /
- 2003
An Efficient Algorithm Using the locality of Data for Mining Quantitative Association Rules
수량 연관규칙 생성을 위한 데이터의 지역성을 고려한 효과적인 알고리즘 제안
Abstract
최근 대용량의 데이터베이스로부터 연관규칙을 발견하여 이를 활용하는 단계에서 이러한 연관규칙을 수량항목에도 적용할 수 있도록 확장하는 연구가 소개되고 있다. 본 논문에서는 수량 항목을 이진항목으로 변환하기 위하여 빈발구간 항목집합(Large Interval Itemsets)을 생성할 때 수량 항목이 특정 영역에 집중하여 발생하거나 골고루 분포되어 있지 않은 경우, 이러한 지역성(locality)을 고려하여 빈발구간 항목집합을 생성하는 방법을 제안한다. 이 방법은 기존의 방법보다 많은 수의 세밀한 빈발구간 항목들을 생성할 수 있을 뿐만 아니라 의미 있는 구간을 중심으로 빈발구간 항목들이 순서대로 생성되기 때문에 세밀도를 판단하여 활용할 수 있으며, 원 데이터가 가지고 있는 특성의 손실을 최소화할 수 있는 특징이 있다 또한 인구센서스등 실 데이터를 사용한 성능평가를 통하여 기존의 방법보다 우수함을 보였다.
Keywords