High Molecular Weight Poly-γ-Glutamic Acid: Synthesis, Production, and Its Application Chung Park¹, Kwang Seok Kim¹, Makoto Ashiuchi², Haruo Misono², Kenji Soda³, and Moon Hee Sung ^{1,4} ¹BioLeaders Corp. 408-1, Sajung-dong, Jung-gu, Daejeon, Korea, ²Dept. of Bioresources Science, Kochi University, Kochi, Japan, ³Dept. of Biotechnology, Kansai University, Suita, Japan, ⁴Dept. of Bio-Nanochemistry, Kookmin University, Seoul, Korea. Poly- γ -glutamic acid (γ -PGA) is an unusual anionic polypeptide in that glutamate, mainly the D-enantiomer, is polymerized via a γ -amide linkage and has potential as a new biodegradable material in the food and cosmetics industries as well as in medicine, but a mass-production system for this useful biopolymer remains to be developed. Recently a bacterium with high γ -PGA productivity was isolated from the traditional Korean beanpaste Chungkookjang. This bacterium could be classified as a *Bacillus subtilis*, but sporulation in culture was infrequent in the absence of Mn²⁺. It was judged to be a variety of *B. subtilis* and designated *B. subtilis* chungkookjang. *B. subtilis* chungkookjang harbors no plasmid and is the first *B. subtilis* strain reported with both naturally high γ -PGA productivity and high genetic competence. An enzymatic system for the γ -PGA synthesis in *B. subtilis*, the PgsBCA system, was investigated. The gene-disruption experiment showed that the enzymatic system was the sole machinery of γ -PGA synthesis in *B. subtilis*. We succeeded in achieving the enzymatic synthesis of elongated γ -PGAs with the cell membrane of the *Escherichia coli* clone producing PgsBCA in the presence of ATP and D-glutamate. The enzyme preparation solubilized from the membrane with 8 mM CHAPS catalyzed ADP-forming ATP hydrolysis only in the presence of glutamate; the D-enantiomer was the best cosubstrate, followed by the L-enantiomer. Each component of the system, PgsB, PgsC, and PgsA, was translated *in vitro* and the glutamate-dependent ATPase reaction was kinetically analyzed. The γ -PGA synthetase complex, PgsBCA, was suggested to be an atypical amide ligase. The *pgsBCA* genes encoding the membrane-associated γ -PGA synthetase complex are then discussed, along with the latest information on the structure and function of the PgsBCA enzyme complex. L-Glutamate significantly induced γ -PGA production, and highly elongated γ -PGAs were synthesized. The volumetric yield reached 35 mg ml⁻¹ in the presence of 3% L-glutamate. The D-glutamate content was over 50% in every γ -PGA produced under the conditions used. During γ -PGA production, glutamate racemase activity was found in the cells, suggesting that the enzyme is involved in the D-glutamate supply. Highly water-absorbent and biodegradable γ -PGA derivatives have potential as substitutes for hydrogels and thermoplastics synthesized from petroleum. Furthermore, γ -PGA may physiologically function as an adaptation agent in various environments: for example, neutralization of pH near the cell surface in alkalophiles, prevention of drastic dehydration under extremely high saline conditions in halophiles and nullification of immunity in infectious *B. anthracis*. γ -PGA increases Ca²⁺ solubility *in vitro* and *in vivo* and intestinal Ca²⁺ absorption. Calcium solubility *in vitro* increased with an increase in the amount of γ -PGA, due to inhibition of the formation of an insoluble complex of Ca²⁺ with phosphate by γ -PGA. Moreover the data strongly supported the notion that the average molecular weight of γ -PGA is related to the effects on Ca²⁺ solubility. Thus, γ -PGA may be important as a therapeutic tool in the treatment of osteoporosis.