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Free Vibrations of Horizontally Curved Beams
with General Boundary Condition
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Abstract

This paper deals with the free vibrations of horizontally curved beams with the general beundary
condition, which consists of translational and rotational springs. The equations of general boundary
condition of such beams are derived, while the ordinary differential equations governing free vibrations
are adopted from the literature. The parabola as the curved beam’s curvilinear shape is consicered in
numerical examples. For calculating the natural frequencies, the governing equations are so.ved by
numerica] methods. The Runge-Kutta and Determinant Search Methods are used for integrating the
differential equations and for calculating the natural frequencies, respectively. For validation purpose,
the numerical results obtained herein are compared to those obtained from the SAP 2000. With regard to
numerical results, the relationships between frequency parameters and various beam parameiers are

presented in the forms of Table and Figures.
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1. Introduction

Studies on the free vibrations of linearly elastic,
horizontally curved beams of various shapes have
been reported for more than three decades. These
studies were critically reviewed by Lee, et al.®
Briefly, such works included studies of circular
curved beams with predictions of the lowest
frequency by Volterra and Morell®, Romanelli and
Laura®, and Maurizi, et al; studies of non-
circular curved beams with predictions of higher
frequencies by Shore and Chaudhuri®, Kawakami,
etal®, Kang, et al®, Yildirim ®, and Lee, ef al.\V;
and studies showing the effect of rotatory inertia on
free(l}f)ibration frequencies by Rao®, Laskey'?, and
Mo ".

All the works mentioned above include the
curved beams with only perfect end constraints,
while works on general boundary condition should
not be seen in the open literature.

Concerning with the straight beams with the
general boundary condition, Li"® and Lee et al."?
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studied the free vibrations of such me¢mbers with
the general boundary condition. Especially, only the
uniform beams have been considered ir the former,
while not only uniform beams but also linearly
tapered beams have been taken into account in the
latter for the parametric studies of beams.

In real structural system, the actual supports are
never perfectly rigid, and so, for instance, there will
always be a small amount of translalion against
immovability and a small amount of restraint
against free rotation at a pin support'®. These
deviations from idealized conditions cannot be
disregarded and thus should be taken :nto account
for the analyses of structures in genera! and for the
dynamic problems of structures in particular. Such
imperfect supports should be modeled as the
general boundary condition, which corsists of two
elastic translational and rotational springs®"®.

In view of the above, the purpose of this paper
is to investigate the characteristics of frce vibrations
of horizontally curved beams with the general
boundary condition.

The following assumptions are inhazrent in this
theory: the beam is linearly elastic; the effects of
rotatory inertia and shear deformation are
considered; and the small deflection theory is
governed. In addition, the beam is assurned to be in
harmonic motion.
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2. Mathematical Model

The geometry of horizontally curved beam
placed on the rectangular co-ordinates (x,y),
symmetric about the crown, is depicted in Fig. 1. Its
span length, horizontal rise and shape of the middle
surface are [, h, and y(x), respectively. Its radius
of curvature p, a function of the co-ordinate x,

has an inclination # with the radius of left support.
Each end of the beam is supported by two separate
elastic springs, i.e. the translational and rotational
springs, as shown in Fig. 1. Its translational spring
constants of left and right ends are K, and K,
and rotational spring constants are K,, and X,,,
respectively. However it is assumed that the
torsional angle at each end is not allowed as shown
in the Fig. 1. The beam has a uniform cross-section
with the area A, the area moment of inertia of the
cross-section I, and the polar moment of inertia of
the cross-section J . Also, depicted in Fig. 1 are
positive directions of the vertical displacement v,
the rotation due to bending y , rotation due to
shear # , and the torsional angle ¢ at any
coordinates (x, y) .

The beam is assumed to be in harmonic motion,
or each co-ordinate is proportional to sin(w;?),

such as
v(x,t) = vsin(w;t) 0))
w(x,t) =y sin(w;t) )
P(x,1) = ¢sin(o,t) 3)

where o, is the angular frequency, ¢ is time and
{ is mode number.

Fig. 1 Horizontally Curved Beam with General
Boundary Condition and lts Variables

To facilitate the numerical studies and to obtain
the most general results for this class of problem,
the following non-dimensional system variables are
defined. The horizontal rise to span length ratio f,

slenderness ratios s and Sps shear parameter u,

and stiffness parameter e, respectively, are

f=hll 4)
s=1/I/4)" (5)
s, =1I(J/ 4)""* (6)
u=xGIlE (N
e=GJ I(EI) (8)

where x is the shape factor of the cross-section,
and £ and G are Young’s modulus and shear
modulus, respectively.

The co-ordinates, displacement and the radius
of curvature are normalized by span length /:

E=x/l ©)
n=yll (10)
s=v/l a1
g=pll (12)

Finally, the frequency parameter is defined as
¢ =w P(yA/ ENV?, i=1,2,3,4,A (13)

where y is the mass density.

Using both the stress resultants and the inertia
forces and Eqs. (1) through (13) give the following
non-dimensional differential equations governing
free vibrations of horizontally curved beams with
the variable curvature"'”, that include the effects of
rotatory inertia and shear deformation. Note that in
this study, the governing equations are not derived
but adopted from the literature.

8" =a,0"+cl a0 +ay’ (14)

" =a,8 +ay' +(e+as+clag )y + (15)
(1+e)' +a,¢

¢ =—(+re W +ay+rad + a6

e (1+clay)é

where (')=d/d¢ , and the coefficients of g
through a; are

a =¢¢ (17.1)
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a,=-u's2? (17.2)
ay=¢ (17.3)
a,=-us’¢ (17.4)
a; = us’¢? (17.5)
ag=-s¢? (17.6)
a,=-(¢! 7.7
ag=-s,"¢? 17.8)

3. Boundary Conditions

Now consider the boundary conditions. The
shear force Q and bending moment M can be

expressed in terms of amplitude v, y and ¢
are given as follows (",

Q=KAGp = xAG(p™V ~y)
M =Elp™ (¢-v)

(18)
(19)

Each end of beam is supported by two separate
springs, i.e. the linearly elastic translational and
rotational springs, as shown in Fig. 1. At lefi end
(x=0), the spring constants are X, and K, .
Therefore, the shear force Q and the bending
moment M corresponding to K, and K,

with deflection v and rotation y can be
expressed as follows.
0=-K,v (20)
M=K,y (V3))

In addition, to facilitate the numerical studies,
the boundary conditions are cast in the following
non-dimensional forms of spring parameters.

kg, =K, I’ (x*EI) (22)
ky, = K, 1 /(x> ET) (23)
kg =K, I’ (x*EI) (24)
ky, = Kl (xED) (25)

Using Egs. (18) and (20) combined with Egs.
(11), (12) and (22) give the non-dimensional
boundary equation at the left end as follows.

(6 —y+nt s kg 5=0 (26)

Also, combining Eqs. (12) and (23), and using
Egs. (19) and (21) give the non-dimensional
boundary equation as follows.

9=y~ 7 kyGy =0 @7

At right end (x=1), the spring constants are
K, and K, , and thus, Q and M are

expressed by
Q=K,v (28)
M=-K,y (29)

Similarly, combined with Egs. (11}, (12), (23)
and (25) using Eqgs. (18) and (20), and Egs. (19) and
(21) give the non-dimensional boundary equations
at the right end as follows.

6 -y -y s kg5 =0
$-y' + 7 kyly =0

(30)
(€3Y)

Finally, the torsional angles are not allowed at
both left and right ends (x=0 and x=/) and the
non-dimensional boundary condition is given as
follows.

$=0 (32

4. Shape Function

The coefficients defined by Eqs. (4) through (8)
are computed as follows. Cast the given arch shape
y=y(x) in non-dimensional form using Eqs. (9)
and (10). This leads to

n=n() (33)

Both 6 and ¢ are computed from ‘he Eq. (33)
expressed as the function of single varizble &. By
mathematical definition,

6 =n/2-tan(y')
c = (l+ ni2)3/2 /nii

(34
(3%)

where ()=d/dé¢.

Then ¢’ is calculated from the derivatives of
Egs. (34) and (35) by using
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¢'=(dg/dé)ds/do) (36)

Consider now the shape function of beam
geometry. In this study, the parabolic beam is
considered as the beam geometry. The general
equation for the parabolic beam of span length !
and horizontal rise A is

y=—(4h/P)x(x-1), 0<x <! (38)

With Egs. (4), (9) and (10), the non-dimensional
form of Eq. (38) becomes

n=-4f5(&-1), 0<5<l1 (39

With Eq. (39), the following quantity is
calculated from Eq. (34):

O=rx/2—tan"'[-4f(2& -1)] (40)

Also, the terms of radius of curvature ¢§ and
its derivatives ' are calculated by using Egs. (35),
and (36) with Eq. (39). That s,

¢ =0125F""1+16f2(2& -1)*T"?
=152 -D+1617(2& - 1?12

(42)
(43)

Thus, with the coefficient a, through a,

expressed in terms of the single variable £ and
with the end conditions of Egs. (26), (27), (30), (31)
and (32), Egs. (14), (15) and (16) can be solved
numerically to determine the frequency parameters
¢; and the corresponding mode shapes & =46(6),
w =w(B)and ¢ = @(0) for parabolic beam with the
general boundary condition.

5. Numerical Methods and Discussion

Based on the above theory, a computer program
has been written to calculate frequency parameters
¢; and corresponding mode shapes &=4,(6),
v =y, (@) and ¢=¢(6), but not shown in this
paper. The numerical methods described by Lee and
Wilson"®, and Lee ef al.’ were used to solve the
differential Egs. (14), (15) and (16) subjected to the
boundary conditions of Egs. (26), (27), (30), (31)
and (32). Firstly, the Determinant Search method
combined with the Regula-Falsi method"® was
used to obtain the frequency parameter, c¢;, and

300 T l T l T ] T I 1
b f=0.2, 5=100, e=0.65, n=0.32, s,=71
250 + ksa=10, kep=20, ky,=30, kpy=40
wor (\sﬁ a4 5 h
G150 \ ~
I T
100 | - E
o e i=2 |
50 - o p=} = aj
- 55 i=1 = &
0 | . ! 1
0 20 40 60 80 100

1/A6
Fig. 2 Convergence Analysis

then the Runge-Kutta method'® was used to
calculate the mode shapes §and 4.

Prior to executing the numerical study, the
convergence analysis, for which f =0.2, s =100,
€=0.65, u=032, s5,=T71, kg =10, kg =20,
k,, =30 and k,, =40, was conducted to determine
appropriate step size A6 in the Runge-Kuita
method. Figure 2 shows 1/Af8 versus ¢, curves,
in which a step size of A@=1/50 is found to give
convergence for ¢; to within three significant
figures.

Four lowest values of ¢;(i=1,2,3,4) were
calculated in this study. Numerical results, given in
Table 1 and Figs. 3 through 6, are now discussed
hereafter. The first series of numerical results are
shown in Table 1. These studies served as
preliminary check on the analysis presented herein.
For comparative purposes, finite element solutions
based on the commercial packages SAP 2000 were
used to compute the first four frequency parameters
¢; for the two geometry cases. The results showed

Table 1 Comparisons of ¢; between this study
and SAP 2000 for e=0.65 x=0.32,and

s, =0.71s
| Frq. parameter, ¢, A
Geometry i This SAD 2
study(A) [ 2000(B)

f=02,5=100, 1 17.75 17.79 | 0.998
ks, =10,kg =20, | 2| 5438 53.78 | 1.011
k,, =30,k, =40 |3 111.8 108.6 | 1.029
4( 1843 1849 | 0.997
f=03,5=50, 1 13.50 13.30 | 1.015
kg, =kg =10, 2| 4193 42.61 | 0.984
ky, =k, =20 3| 8548 86.08 | 0.993
4( 101.2 102.7 | 0.985
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that 100 three- dimensional finite frame elements
were necessary to match within a tolerance of about
3% values of c¢; computed by solving the
governing differential equations Egs. (14), (15) and
(16) in this study. It can be concluded that the
present study gives accurate results.

It is shown in Fig. 3, for which s=100,
kg =10, kg =20, k, =30 and k,, =40, that
each frequency curve except 4" mode is decreased
as the rise to span length ratio f is increased.
However, the 4™ frequency curves reaches a peak as
f isincreased.

It is shown in Fig. 4, for which f=0.2,
ks, =10, kg =20, k,, =30 and k,, =40, that
the frequency parameters are initially increased,
then in most cases approach a horizontal asymptote,
as the slenderness ratio s is increased. It is noted
that two pairs of lines cross, which shows that two
mode shapes may exist at the same frequency. That
is, the two mode shapes of 2™ and 3™ modes may
exist where ¢, =c; =41.43 at s=22.07 (marked

as W). Also, the frequency curves of third and
fourth modes come cross at (53.15, 103.4) (marked
as A).

Figure 5 shows the effect of translational spring
parameter ks, on the frequency ratio of ¢;/c,

when the clamped-clamped beam with f =0.2,
s=100, €=0.65, u=032 and s,=71 works
loose its rigidity against immovability for the
translational direction at the left end. Here, ¢, is
the frequency parameter ¢; of clamped-clamped
beam and its corresponding values of c,; are given
in Fig. 5. The frequency ratioc;/c, of imperfect
clamped-clamped beam increases as kg is

250 ——————T——T7—
| 5=100, e=0.65, n=0.32, 5,=71
ke=10, k5,=20, kp=30, byy=40
200 [ .

150

Ci

100

50

| s "
0 L
0 0.1 0.2 0.3 0.4 0.5

Fig. 3 ¢; Versus f Curves

250 — T —
L f=0.2, e=0.65, u=0.32,5,=0.71s ]
ksa=10, kss=20, kp,=30, ks =40

200 |~ -
150 -
3y I
100 -
50 -
0 s 1 . 1 ) 1
0 50 100 150 200

s
Fig.4 ¢; Versus s Curves

increased, as it is expected. As kg gets smaller,
especially when kg <40 , the ratio increases
significantly. It should be noted that the effect of
ks, is negligible in case of the first mode when
ks, <100, since its increasing rate is ery small as
shown in the Fig. 5.

Figure 6 shows the effect of rotational spring

parameter k,, on the frequency rato of ¢;/c,,
when the clamped-clamped beam with f =0.2 and
s=100 works loose it rigidity of anti-rotation at
the left end. Also shown in the figure are the
corresponding values of ¢, for perfuct clamped-
clamped beam. The frequency rato ¢;/c, of
imperfect clamped-clamped beam increases, as k,,
is increased. As k,, gets smaller the ratio

increases relatively more significantly. However it
should be noted that all the frequency ratios are the
same nearly.

1.0 — 7
| /=0.2,5=100, ¢=0.65, n=0.32, sp=-71 4

Cor=16.81, €o;=48.07, C5=94.92, 20~156.3
1.00 | =

0.95

Ci/Coi

0.90

0.85 - -

0.80 1 1 L 1 i | P | A
0 20 40 60 30 100

Fig. 5 Effects of kg5 on ¢, of Imperfect
Clamped-Clamped Beam
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Fig. 6 Effects of k,, on ¢; of Imperfect
Clamped-Clamped Beam

6. Concluding Remarks

This study deals with the free vibrations of
horizontally curved beam with the general boundary
condition. The boundary conditions of such beam are
derived as the non-dimensional forms. Differential
equations governing free vibrations of horizontallg;
curved beams, adopted from the open literature(”,
subjected to the boundary conditions derived herein
were solved numerically to calculate both natural
frequencies. For validating the theories and
numerical methods presented herein, the frequency
parameters are compared to those of SAP 2000. As
the numerical results hercin, the relationships
between the frequency parameters and the various
non-dimensional beam parameters are intensively
investigated. It is expected that the results obtained
herein can be practically utilized in the fields of
vibration control.

References

(1) Lee, B.K., Oh, S.J. and Park. K.X., 2002,
“Free vibrations of shear deformable circular
curved beams resting on an elastic foundation,”
International Journal of Structural Stability and
Dynamics, Vol. 2, No. 1, pp. 77-97.

(2) Volterra, E. and Morell, J.D., 1960, “A note
on the lowest natural frequency of elastic arcs,”
Journal of Applied Mechanics, Vol. 27, pp.
744-746.

(3) Romanelli, E. and Laura, P.A.A., 1972,
“Fundamental frequency of non-circular, elastic,
hinged arcs,” Journal of Sound and Vibration, Vol.
24, No. 1, pp. 17-22.

(4) Maurizi, M.J., Rossi, R.E. and Belles, P.M.,
1991, “Lowest natural frequency of clamped
circular arcs of linearly tapered width,” Journal of
Sound and Vibration, Vol. 144, No. 3., pp. 357-361.

(5) Shore, S. and Chaudhuri, S., 1971, “Free
vibration of horizontally curved beams,” Journal of
the Structural Division, Vol. 98, No. ST3, pp.
793-796.

(6) Kawakami, M., Sakiyama, T., Matsuda, H.
and Morita, C., 1995, “In-plane and out-of-plane
free vibrations of curved beams with variable
sections,” Journal of Sound and Vibration, Vol. 187,
No. 3, pp. 381-401.

(7) Kang, K, Bert, C.W. and Striz, A.G., 1996,
“Vibration analyses of horizontally curved beams
with warping using DQM,” Journal of Structural
Engineering, ASCE, Vol. 122, No. 6, pp. 657-662.

(8) Yildirim, V., 1997, “A computer program
for the free vibration analysis of elastic arcs,”
Computers & Structures, Vol. 62, No. 3, pp.
475-485.

(9) Rao, S.S., 1971, “Effects of transverse shear
and rotatory inertia on the coupled twist-bending
vibrations of circular rings,” Journal of Sound and
Vibration, Vol. 16, No. 4, pp. 551-566.

(10) Laskey, A.J., 1981, Out-of-plane vibrations
of continuous circular curved beams considering
shear deformation and rotatory inertia, M.S. thesis,
The University of New Hampshire, USA.

(11) Mo, I.M., 1997, A study on free vibrations
of horizontally curved beams with variable
curvature, Ph.D. Thesis, Wonkwang University,
Korea.

(12) Li, W.L., 2000, “Free vibrations of beams
with general boundary condition.” Journal of Sound
and Vibration, Vol. 237, pp. 709-725.

(13) Lee, B. K., Lee, J.K., Lee, T.E. and Kim,
S.G., 2002, “Free vibrations of tapered beams with
general boundary condition.” KSCE Journal of
Civil Engineering, Vol. 6, No.3, pp. 283-288.

(14) Timoshenko, S.P. and Gere, .M., 1997,
Mechanics of Materials, PWS Publishing Company,
USA.

(15) Lee, B.K. and Wilson, J.F., 1989, “Free
vibrations of arches with variable curvature,”
Journal of Sound and Vibration, Vol. 136, No. 1, pp.
75-89.

(16) Al-Khafaji, A.W. and Tooley, J.R., 1986,
Numerical Method in Engineering Practice, Holt,
Reinhardt and Winston, Inc.

- 875 -



