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1. INTRODUCTION

Curved beams are one of the most important basic structural units as well as the beams, columns and
plates. Most complicated structures consist of only these basic units and therefore it is very attractive
research subject to analysis both the static and dynamic behavior of such units including the arches.

The problems of free vibrations of curved beams have been the subject of much work due to their many
practical applications. Furthermore, characteristics of free vibrations of structures including arches are
definitely unique, which are consequently used as an assessment index in evaluating the soundness of structures.

The governing equations and its significant historical literature on the free in-plane vibrations of elastic
curved beams have been reported in many references for more than three decades. Background material for
the current study was critically reviewed by Oh‘". Briefly, such works included studies of the non-circular
arches with predictions of only the lowest frequency in flexure by Romanelli and Laura®, and in extension
by Wang®, and Wang and Moore; studies of circular arches with predictions of the higher frequencies by
Wolf® and Veletsos et al.); studies of arches with variable curvature of the higher frequencies in flexure by
oM, Kang and Bert”, Oh et al.®, and Oh ef al.®’; and the effects of transverse shear and rotatory inertia on
free vibration frequencies of arches by Irie ef al."” and Davis et al."",

This paper has three main purposes: (1) to present the differential equations for free, planar vibrations of
arches, i.e. vertically curved beam, with variable curvature and unsymmetric axis, where all equations are
derived in Cartesian coordinates rather than in polar coordinates; (2) to include the effect of rotatory inertia
in the differential equations; and (3) to illustrate the numerical solutions to the newly derived equations for a
broad class of parabolic arches.

In most previous works on arch vibrations, the polar coordinates were employed and also the effect of
unsymmetric axis was excluded in the parametric studies of vibration problems. The results presented herein
extent significantly previous works. That is, using the Cartesian formulation together with highly efficient
and convergent numerical methods, the free vibration frequencies and mode shapes, with and without the
rotatory inertia, are investigated for parabolic arches with unsymmetric axis. Such numerical results are
presented for both clamped ends and both hinged ends. The lowest four non-dimensional frequency
parameters are shown as functions of three system parameters: the rise to chord length ratio, the span length
to chord length ratio, and the slenderness ratio.

The following assumptions are inherent in this theory: the beam is linearly elastic; both tangential and
radial displacements are considered; and the small deflection theory is governed. In addition, the beam is
assumed to be in harmonic motion.
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2. MATHEMATICAL MODEL

The geometry and nomenclature of the arch, i.e. vertically curved beam, placed in the Cartesian
coordinates (x,y), with variable curvature and unsymmetric axis are shown in Fig. 1. The arch is supported

by either both clamped ends or both hinged ends. The geometric variables are defined as follows.

L: Span length

[ : Chord length

h: Rise

v: Tangential displacement
w: Radial displacement

v : Rotation of cross-section

p: Radius of curvature
@ : Inclination of p with x -axis

The shape of parabolic beam, which is chosen as the object arch with variable curvature herein, is

expressed in terms of (/,4) and the coordinate x inthe range from x=0 to x=L. Thatis,

y=—(4h/1*)x(x=1), 0<x<L

(D

A small element of the beam is shown in Fig. 2 in which are defined the positive directions for the axial
force N, the shear force O, the bending moment M , the tangential inertia force F,, the radial inertia

force F,,, and the rotatory inertia couple C, . Treating the inertia forces and the inertia couple as equivalent

static quantities, the three equations for “dynamic equilibrium” of the element are

N'+Q+pF,=0
Q' -N+pF, =0
p"M’—Q—C,,,=0

where (') isthe operator d/d8.
The equations that relate N, M and y to the displacements v and w? are

N=EAp ' [(V' +w)+rip (W + w)]
M = EAr p2(W" +w)
y=p"(W-v)

w is. y=
v [arch axis, y=y(x)
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Fig. 1 Geometry of vertically curved beam Fig. 2 Element subjected to stress resultants
and its variables and inertia forces
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where E is Young’s modulus, A is the cross-sectional area and » is the radius of gyration of
cross-section.

The arch is assumed to be in harmonic motion, or each coordinate is proportional to sin(w;#) where o,
is the ith circular frequency and ¢ is time. Then the tangential and radial inertia forces, and rotatory inertia
couple per unit arc length are, respectively,

F,=ma,’v ®)
F,=mo w 9)
C, =ma)i2r2y/=mwi2r2p"(w’*v) (10)

where m is the mass per unit arc length.
When Egs. (5) and (6) are differentiated once, the results are

N:___EAp—l[(vn+wl)+r2p—2pr(wm+w:)_p—lp/(v:+w)_3r2p—3pl(wn+w)] (11)
M'=—EAP p2 [(W" + W) = 2p"" p'(W" + w)] (12)

When Egs. (10) and (12) are substituted into Eq. (4), then
Q=p"'M'-RC, =—EAr’ p[(W" + W) =2p"' p'(W" + w)]- Rmep’rP p™ (W —v) (13)
where the index R is defined as follows.

R=1 if rotatory inertia C, is included. (14.1)
R=0 if rotatory inertia is excluded. (14.2)

The following equation is obtained by differentiating Eq. (13).

Ql - _EAer—B[(wml_'_ WN)_Sp—lpl(Wm + W’) +2p—l(4p—lp12 _pll)(wll+ W)] (15)
- Rmarp™ (W =)~ p” p'(W V)]

From Fig. 1, it is seen that the inclination & is related to the coordinate x. By the mathematical
definition,

0 =n/2—tan"'(dy/dx)=x/2—tan"' [-(4h!"2)(2x - 1)] (16)
When Eq. (16) is differentiated, the result is
d6 =8hl*)/[I* +16h*(2x —1)*Jdx (17)

Define the following arch parameters.

g, =[1* +16h*(2x - 1)*1/(8h%) (18.1)
g, =8h(2x 1)/ (18.2)
g, =16h/1* (18.3)

From Eq. (17), and with Egs. (18.1)-(18.3), the following differential operators are obtained.
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4 _g 4 (19)
40 %'y

d? » d? d

Ez‘:gn ?ﬁ“glgza (20)
d? d? d? d

W=813;;;+381282F +g.(8.8; +822)Z (21
d* d* d’ d? d
W=g(':ix—4+6gfg2;i—; +glz(4g1g3+7g22)-&7 +£,8,(42,8; +g22);x- (22)

The radius of curvature p at any point of the parabolic arch is expressed as Eq. (23). Also, its
derivatives p’ and p" can be expressed in terms of x by using Eq. (23) with Egs. (19) and (20) as Egs.
(24) and (25), respectively. That is,

p=[1+(dy/dx) T2 (d?y/dx?) ™" = (1/V2)g,” g, 23)
P =(3V2/4)gg,8,"’ 24)
p"=02/8)g g, 2g18, +38,°) (25)

Now cast the differential equations of free vibration for the arch into non-dimensional form by
introducing the non-dimensional parameters as follows.

E=x/l (26)
n=yll 27
f=hil (28)
e=L/] (29)
A=v/l 30)
5=wll G1)
s=1llr (32)

Here the coordinates (x,y), the rise &, the span length L, and the displacements v and w are

normalized by the chord length /,and s is the slenderness ratio.
When Eqgs. (5), (9), and (15) together with Eqgs. (18)-(32) are used in Eq. (3), the result is Eq. (33). Also,
when Egs. (8), (11) and (13) are combined with Egs. (2), the result is Eq. (34). That is,

8" =a,6"™ +(a, + Reay)8" +(a, + Reag)d +(ag +¢°a;)6 + ¢ (ag + Rag)A' + Re%agA (33)
A= a,6" +(ay, + Rea)d" +a,8 +ai X+l (ag + Ray)A (34)

where (') isthe operator d/d&, and the constants of a, through a,, are as follows.

a, =1.5b'b, (35.1)
a, =—b 2 (64 b, +2.5b,> b, +2) (35.2)
a; =-8fs7bh, (35.3)
a, =b b, (56 fb, —11.5b,” +b, +5.5) (35.4)
a; =4f57b, (35.5)
ag =-b* (85’ +18b," —b,) (35.6)
a, =641p} (35.7)



ag = -8 f5° (35.8)

a, =857 (35.9)
ay, =-12f72b,b, (35.10)
a, =0.18757's72b,b, (35.11)
a, =0.1875f " s72b,*b,* =, (35.12)
a, =57b" (35.13)
a,, =1.5b,7b,(0.125f "'s72b, 7 +1) (35.14)
a5 =0.5b"'b, (35.15)
a, =~8fs7b, (35.16)
a, =—-s7b" (35.17)
where,
b =0.125f ' [1+16£7(2& - 1)*] (36.1)
b, =81 (2& ~1) (36.2)
by =61+ 64 £2(2£ —1)*] (36.3)

In Egs. (33) and (34), The non-dimensional frequency parameter is defined as

¢, =wr " 12 [mI(EA) = 0> \JYAED), i=1,2,3,4,A @37

where y is the mass density.

Now consider the boundary conditions. At a clamped end (x =0 or x= L), the boundary conditions are
v=w=y =0 and these relations can be expressed in the non-dimensional form as

A=0 at £=0 or £=¢ (38)
6=0 at £=0 or £=e (39)
§'=0 at £=0 or £=e¢ (40)

Here, the latest Eq. (40) implies that the rotation of cross-section i expressed in Eq. (7) is zero.

At a hinged end (x=0 or x=L), the boundary conditions are v=w=M =0 and these relations can
be expressed in the non-dimensional form as

A=0 at £=0 or {=e (41
0=0 at £=0 or £=e : (42)
§"+b'b,6'=0 at £=0 or E=e (43)

Also, the latest Eq. (43) implies that the bending moment M expressed in Eq. (6) is zero.

3. NUMERICAL METHODS AND DISCUSSION
Based on the above analysis, a general FORTRAN computer program was written to calculate the

frequency parameters ¢; and the corresponding mode shapes A =A4,(&), 6= 5,(§) and yw =y,(&). The
numerical methods described by Oh™, and Lee er al."” were used to solve the differential Egs. (33) and (34),

-51-



subjected to the end constraint Eqs. (38)-(40) or Egs. (41)-(43). First, the Determinant Search method
combined with the Regula-Falsi method"® was used to obtain the frequency parameter ¢,, and then the

Runge-Kutta method*'?

was used to calculate the mode shapes A, § and .

Prior to executing the numerical studies, the convergence analysis, for which f=0.3, e=0.8, s =50,
andR =1, was conducted to determine the appropriate step size A¢ in the Runge-Kutta method. Figure 3
shows 1/A& versus c; curves, in which a step size of 1/A¢ =20 is found to give convergence for ¢, to

within three significant figures. It is noted that the convergence efficiency herein is highly promoted, under
same convergence criteria, comparing the appropriate 1/A& =50 obtained by Oh™ in polar coordinates.

However, the step size of A =1/50 was used herein in order to increase accuracy of numerical solutions.

300 (1T .
[ f=03, e=08, s=50, R=1 ]
e : both clamped ends i
250 ... : both hinged ends _]‘
[ i=1,2, 3, 4: from bottom to top b
200 .
S Is0F
r
100 |-
50 F
0
¢

1/a€

Fig. 3 Convergence analysis

Four lowest values of ¢;(i =1,2,3,4) and the corresponding mode shapes were calculated in this study.
Numerical results, given in Table 1, Table 2 and Figs. 4 through 7, are now discussed. The first series of
numerical results are shown in Table 1. These studies served as an approximate check on the analysis
presented herein. For comparative purposes, finite element solutions based on the commercial packages SAP
2000 were used to compute the first four frequency parameters ¢; for both clamped ends and both hinged
ends. The results showed that the 100 finite elements were necessary to match within a tolerance of about
2.5% values of ¢; computed by solving the governing differential equations.

Table 1 Comparisons of ¢; between this study and SAP 2000

. | Frequency parameter, c; .

Geometry l - Ratio

This study { SAP 2000
1] 6013 60.30 0.997
Both clamped ends, | ) | ¢4 5 80.96 0.990
£=03,e=08, .

o R=1 3] 1335 136.9 0.975
§ER A= 4| 1804 181.2 0.996
, 1] 4034 40.92 0.986

B}"i‘ g‘;’geei f)“gs’ 2| 7907 80.42 0.983
~s0 re1 |3 100.6 100.9 0.997
§=RA= 4| 1705 173.6 0.982

* Ratio=(This study)/(SAP 2000)
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All of numerical results that follow are based on the analysis reported herein. The effects of rotatory
inertia on natural frequencies are shown in Table 2. It is apparent that the effect of rotatory inertia is to
always depress the natural frequencies, in which these depressions are less than about 3 %. Further, the
frequencies of both clamped ends are always greater than those of both hinged ends, other parameters
remaining the same.

Table 2 Effect of rotatory inertia on frequency parameter

Geometry ; Frequency parameter, ¢; Ratio®
R=0 R=1
b clammed 1 61.05 60.13 0.985
Bothclampedends, | , | g5 44 80.12 0.996
f=03,e=0.8,
s 3 136.0 133.5 0.982
§= 4 181.4 180.4 0.994
& hined ond 1 40.59 40.34 0.993
Bf"= ongedos L2 | 7935 79.07 0.996
—56 SRS 3 102.7 100.6 0.980
5= 4 1745 170.5 0.977

* Ratio= (R =1)/(R = 0)

It is shown in Fig. 4, for which ¢=0.8, s=50 and R =1, that each frequency curve of second modes
of both clamped ends and both hinged ends reaches a peak as the horizontal rise to chord length ratio fis
increased while the other frequency parameters decrease as f is increased. Further, it is observed for these
unsymmetric arch configurations that two mode shapes can exist at a single frequency, a phenomena that was
previously observed only for symmetric arch configurations'”. For both hinged ends, the first and second
modes have the same frequency ¢, =c¢, =53.06 at f =0.153 (marked as ). However, the frequency
curves of first and second modes for both clamped ends come close each other but not cross.

It is shown in Fig. 5, for which f =03, s=50 and R=1, that the frequency parameters c,
decrease as the span length to chord length ratio e is increased. Particularly, it is noted that the frequency
parameters of third and fourth modes are more significantly decreased as e gets smaller value.

300 e T 1000~
I e=038, s=50, R=1 1 [ f=0.3,s=50, R=1

[ : both clamped ends 1 : both clamped ends ]
........ : both hinged ends 800 B -------- : both hinged ends ]
i=1, 2, 3, 4: from bottom to top W\ i=1, 2, 3, 4 : from bottom to top

250

I

i 4.

LIPS S LB 1 B B

200 -
] 600
S 150 S
400
200 kK™
0—'..“|..L.|...41....1....: 0
00 01 02 03 04 05 025 050 075 100 125 150
f e
Fig. 4 ¢, versus f curves Fig. 5 ¢, versus e curves



It is shown in Fig. 6, for which /=03, e=0.8 and R=1, that the frequency parameters c,

increase, and in most cases approach a horizontal asymptote, as the slenderness ratio s is increased. Further,
it is seen from Tables 1 and 2, and Figs. 3 through 6 mentioned above that the frequencies of both clamped
ends are always greater than those of both hinged ends, other parameters remaining the same.

400
/=03, ¢=0.8 R=1

{ : both clamped ends
TR : both hinged ends

300 - i=1, 2, 3, 4 : from bottom to top

A

g 200

100+ [/

Fig. 6 ¢; versus s curves

Figure 7 shows the computed mode shapes with f=0.3,e=0.8,s=50 and R=1 for both clamped

ends and both hinged ends. From these figures, the amplitude and the positions of maximum amplitude and
nodal points of each mode can be obtained, which is widely used in the Zelds of vibration control.

f=0.3, e=0.8, s=50, R=1
------- : undeformed axis
—— : both clamped ends
——~ . both hinged ends

£=0

Fig. 7 Example of mode shapes
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4. CONCLUDING REMARKS

This study deals with the free vibrations of curved beams with unsymmetric axis. The governing

differential equations are derived in Cartesian coordinates rather than in polar coordinates, in which the
effect of rotatory inertia on the natural frequency is included. The differential equations, subjected to
parabolic curved beams, newly derived herein were solved numerically to calculate both natural frequencies
and mode shapes. For validating the theories and numerical methods presented herein, frequency parameters
obtained in this study are compared to those of SAP 2000. The convergent efficiency of numerical methods
developed herein is highly improved under the differential equations in Cartesian coordinates. As the
numerical results, the relationships between the frequency parameters and the various non-dimensional arch
parameters are reported, and typical mode shapes are presented. It is expected that results obtained herein
can be practically utilized in the fields of vibration control.

10.
11.
12
13.

14.

REFERENCES

. Oh, S.J., 1996, Free vibrations of arches with variable cross-section, Ph.D. Dissertation, Wonkwang

University, Iksan, Korea.

. Romanelli, E. and Laura, P.A.A., 1972, “Fundamental frequency of non-circular, elastic, hinged arcs,”

Journal of Sound and Vibration, 24(1), pp. 17-22.

. Wang, TM., 1972, “Lowest natural frequency of clamped parabolic arcs,” Journal of the Structural

Division, ASCE, 98(ST1), pp. 407-411.

. Wang, TM. and Moore, J.A., 1973, “Lowest natural extensional frequency of clamped elliptic arcs,”

Journal of Sound and Vibration, 30(1), pp. 1-7.

. Wolf, Ir. J.A., 1971, “Natural frequencies of circular arches,” Journal of the Structural Division, ASCE,

97(ST9), pp. 2337-2350.

. Veletsos, A.S., Austin, A.J., Pereira, C.A.L. and Wung, S.J., 1972, “Free in-plane vibrations of circular

arches,” Journal of Engineering Mechanics Division, ASCE, 93, pp. 311-329.

. Kang, KJ. and Bert, C.W.,, 1995, “Vibration analyses of shear deformable circular arches by the

differential quadrature method, ” Journal of Sound and Vibration, 181, pp. 353-360.

. Oh, 8.J., Lee, B.K. and Lee, L. W., 1999, “Natural frequencies of non-circular arches with rotatory inertia

and shear deformation,” Journal of Sound and Vibration, 219(1), pp. 23-33.

. Oh, S.J., Lee, BK. and Lee, LW., 2000, “Free vibrations of non-circular arches with non-uniform

cross-section,” International Journal of Solids and Structures, 37(36), pp. 4871-4891.

Irie, T. and Yamada G. and Tanaka, K., 1983, “Natural frequencies of in-plane vibration of arcs,” Journal
of Applied Mechanics, ASME, 50, pp. 449-4527.

Davis, R., Henshell, R.D. and Warburton, G.B., 1972, “Constant curvature beam finite elements for
in-plane vibration, ” Journal of Sound and Vibration, 25(4), pp. 561-576.

Borg and Gennaro, 1957, Advanced Structural Analysis, McGrow-Hill Book Company.

Lee, B.K., Oh, S.J. and Park. K.K., 2002, “Free vibrations of shear deformable circular curved beams
resting on an elastic foundation,” International Journal of Structural Stability and Dynamics, 2(1), pp.
77-97.

Al-Khafaji, A.W. and Tooley, J.R., 1986, Numerical Method in Engineering Practice, Holt, Reinhardt and
Winston, Inc.

-55-



