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COMPOSITES IN CONSTRUCTION
- CONSTRUCTION WITH DESIGNED STRUCTURES 1I -
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ABSTRACT

Almost all buildings/infrastructures made of composite materials are fabricated without proper design. Unlike
airplane or automobile parts, prototype test is impossible. One cannot destroy 10 story buildings or 100-meter long
bridges. People try to build 100-story buildings or several thousand meter long bridges. In order to realize
“composites in construction”, the following subjects must be studied in detail, for his design: Concept optimization,
Simple method of analysis, Folded plate theory, Size effects in failure, and Critical frequency. Unlike the design
procedure with conventional materials, his design should include material design, selection of manufacturing methods,

and quality control methods, in addition to the fabrication method.

1. Introduction

Buildings/bridges by the reinforced concrete/steel are
three-dimensional ~ structures made of composite
materials, such as cement, steel bars, etc.

However, the engineers can design/analyze such
structures by considering them made of one-dimensional
beams/columns. But, they are protected by codes and
specifications. Almost all buildings/infrastructures made
of composite materials are fabricated without proper
design. Unlike airplane or automobile parts, prototype
test is impossible. In order to realize “composites in
construction”, the following subjects must be studied in
detail.
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2. Sizel/Scale Effects In the Failure of

Composite Structures

Size effects influence the material properties of
quasi-brittle materials (e.g. concrete and rocks). In case
of any material, the larger the volume the greater is the
probability of larger flaws.  More recently, the
mechanics of materials were studied at various scales
ranging from atomic scale to microns to large macro or
structural behavior. It has been known that linear
elastic fracture mechanics (LEFM) applied to lavoratory
size quasi-brittle materials underestimates fracture

toughness.

Classical LEFM technique may underestimate the
true toughness of certain quasi-brittle materials such as
geomaterials by as much as an order of magnitude,
especially for those with large scale heterogeneities, and
using typical laboratory size specimens.
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The question remains as to how laboratory tests could
produce a toughness value closer to the in-situ true
fracture toughness. We can either build a huge laboratory
and test huge specimens: or we can abandon the concept
of LEFM.

In composite structures reasonable theory of
size/scale effects on the failure mechanism is still lacking.
Reduction in fiber strength is experienced when the size
of the structures fiber bundle increases.

An efficient method to characterize the relationship
between strength distribution and size in composites is
not complete yet. It has been known that large
composites are generally weaker than small composites.
There could be several reasons for such phenomenon.
One of the most important causes is the scale effect in
brittle reinforcing fibers. Brittle fibers are generally
strong and uniform in diameter but have the possibility
of containing flaws with different strength. A longer
fiber may have more of such possibility than a short fiber.

Based on the experience of a composite
manufacturing specialist, the rate of decrease of tensile
strength of glass fibers used for filament wound tubes as
the mass of fibers increases is as shown in Fig. 1.From
the test result reported by Crasto and Kim [2], an
approximate relation between 90° tensile strength
reduction rate, Y, and the volume (proportional to the
mass), for the unidirectional composites of AS4/3501-6,
can be expressed as Fig.2. Unless there is the test result
for the same matrix to be used, this equation for epoxy
can be used to estimate the rate of the decrease of 90°
tensile strength.

For each of the constituent materials, both fibers and
matrices, the rates of decrease of strengths, X, X, Y, Y’,
and S, as the mass increases, must be obtained in the
future. The manufacturing method and other possible
factors also have to be considered.
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Fig. 1 Rate of decrease of glass fiber tensile

strength based on mass
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Fig. 2 Tensile strength reduction rate of epoxy
matrix based on mass

Any strength theory can be used with “reduced”
strength as given above.

Comments on Both Strength and Strain
Criteria

Both the maximum stress and maximum strain
criteria assume no interactions among the possible five
modes. Since the Poisson’s ratio is not zero, there is
always coupling between the normal components, and
this leads to disagreement between these two criteria
regarding the magnitude of the load and the mode for the
failure.

The result of two criteria agrees only on the shear
plane and along the four lines of constant failures due to
uniaxial stresses. Just as the deformation of a body is
always coupled by the nonzero Poisson’s ratio, failure of
a body is also coupled. Because the micromechanics of
failure is highly coupled, we should not extend the
simple failure modes based on maximum stress or
maximum strain components to fiber, matrix, and
interfacial failure modes.

Recommended Strength-Failure Analysis
Procedure

With available information at present, the following
strength-failure apalysis procedure is recommended for
glass fiber reinforced composites with epoxy matrix.

1. Obtain reduced X by Fig. 1.

2. Assume the scale effect is the same for both
tension and compression. (This assumption
may be corrected when detailed research result
is available).

3. Obtain Y=Y(Coupon) x by Fig. 2.

4. Obtain Y’=Y*(Coupon) x by Fig. 2.

(Again, this may be corrected when accurate
study result is available).

5. Assume S=8 (Coupon).

6. Use Tsai-Wu failure criteria for stress space.
Since the rates of decrease of the moduii are
not known, use of the criteria for strain space is
complicated.
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3. Vibration Analysis

The problem of deteriorated highway concrete slab is
very serious all over the world. Before making any
decision on repair work, reliable non-destructive
evaluation is necessary. One of the dependable methods
is to evaluate the in-situ stiffness of the slab by means of
obtaining the natural frequency. By comparing the in-situ
stiffness with the one obtained at the design stage, the
degree of damage can be estimated rather accurately.

However, if the plate has boundary condition other
than simple supported, non-uniform cross section, both
material and geometry, and non-uniform loading,
obtaining a reliable solution is very difficult. The basic
concept of the Rayleigh method, the most popular
analytical method for vibration analysis of a single
degree of freedom system, is the principle of
conservation of energy ; the energy in a free vibrating
systemn must remain constant if no damping forces act to
absorb it. In case of a beam, which has an infinite
number of degrees of freedom, it is necessary to assume
a shape function in order to reduce the beam to a single
degree of freedom system. The frequency of vibration
can be found by equating the maximum strain energy
developed during the motion to the maximum kinetic
energy. This method, however yields the solution either
equal to or larger than the real one. For a complex beam,
assuming a correct shape function is not possible. In such
cases, the solution obtained is larger than the real one.

Recall that Rayleigh’s quotient = 11, pp 189~191].

Several structural elements such as the floor slabs of
a factory or a building and others may be subject to point
mass/masses in addition to its own masses. Design
engineers need to calculate the natural frequencies of
such clements but obtaining exact solution to such
problems is very much difficult. Pretlove[3] reported a
method of analysis of beams with attached masses using
the concept of effective mass. This method, however, is
useful only for certain simple types of beams. Such
problems can be easily solved by presented method. The
effect of the amount and the location of the concentrated
mass on the natural frequency can be easily solved.

A simple but exact method of calculating the natural
frequency corresponding to the first mode of vibration of
beam and tower structures with irregular cross-sections
and attatched mass/masses was developed and reported
by Duk-Hyun Kim in 1974 [4]. Recently, this method
was extended to two dimensional problems including
composite laminates, and has been applied to composite
plates with various boundary conditions with/without
shear deformation effects and reported at several
international conferences including the Eighth Structures
Congress[S] and Fourth materials congress[6] of
American Society of Civil Engineers.

Method of Analysis

A natural frequency of a structure is the frequency
under which the deflected mode shape corresponding to
this frequency begins to diverge under the resonance
condition. From the deflection caused by the free
vibration, the force required to make this deflection can
be found, and from this force, resulting deflection can be
obtained. If the mode shape as determined by the series
of this process is sufficiently accurate, then the relative
deflections(maximum) of both the converged and the
previous one should remain unchanged under the inertia
force related with this natural frequency. Vibration of a
structure is a harmonic motion and the amplitude may
contain a part expressed by a trigonometric function.
Considering only the first mode as a start, the deflection
shape of a structural member can be expressed as

w=W(x, y)F(t)=W (x, y)sin a¥ 1)
where W : the maximum amplitude
® : the critical circular frequency
of vibration
t : time.
By Newton’s Law, the dynamic force of the vibrating
mass, m, is

o*w
F=m= . Q@

Substituting Eqn 1 into this,

F=—m(w)*W sin o. 3)

In this expression, @ and W are unknowns. In order
to obtain the natural circular frequency, @ , the
following process is taken. The magnitudes of the
maximum deflection at a certain number of points are
arbitrarily given as

w(i, =W (i, H(D) @

where (i, ) denotes the point under consideration. This

is absolutely arbitrary but educated guessing is good for
accelerating convergence. The dynamic force
corresponding to this(maximum)amplitude is

F(i, )Y =m(, HioG, HO wii, j)D). &)

The “new” deflection caused by this force is a function
of F and can be expressed as

w(i, j)(2)= f{m(k, Do, YOI wik, (1)}
=i AG, j, k, D{m(k, Do, jYDF wik, (1)} (6)
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where A is the deflection influence surface. The
relative(maximum) deflections at each point under
consideration of a structural member under resonance
condition, w(i, j}(1) and w(i, j}2), have to remain
unchanged and the following condition has to be held :

wii, jXD/ w(, j)=1. Y]

From this equation, @(i, j)(1) at each point of
(i, j) can be obtained, but they are not equal in most
cases. Since the natural frequency of a structural member
has to be equal at all points of the member, i.e., @(i, )
should be equal for all (i, j), this step is repeated until
sufficient equal magnitude of (i, j) is obtained at all
(i, /) points. However, in most cases, the difference
between the maximum and the minimum values of
(i, j) obtained by the first cycle of calculation is
sufficiently negligible for engineering purposes. The
accuracy can be improved by simply taking the average
of the maximum and the minimum, or by taking the
value of (i, j) where the deflection is the maximum.

For the second cycle, w(i, j}(2) in

wli, JY3) = f {m(i, NI, N wii, X2}, ®

the absolute numerics of w(i, j)(2) can be used for
convenience.

In case of a structural member with irregular section
including composite one, and non-uniformly distributed
mass, regardless of the boundary conditions, it is
convenient to consider the member as divided by finite
number of elements[4]. The accuracy of ‘the result is
proportional to the accuracy of the deflection calculation.

4. Conclusion

Unlike airplane or automobile parts, prototype tests
for buildings and bridges are impossible. Nevertheless,
almost all buildings/infrastructures made of composite
materials are fabricated without proper design.
Design/analysis of such structure is simply too difficult
for most of the engineers. In this paper, size/scale effects
in failure of composite material structure are briefly
explained. The effect of size/scale may be very serious.
The numerical example in [4] shows that the safety
factor is between 5.459 and 1.5699.

A simpler but exact method of vibration analysis of
structural elements with irregular loadings and sections is
also given herein.
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