Study on preparation of chitosan microcapsule

  • Jae-Don. Cha (HANBUL COSMETICS Co. Ltd., R & D Center) ;
  • Lee, Cheon-Il. (HANBUL COSMETICS Co. Ltd., R & D Cente) ;
  • Lee, Geun-Soo. (HANBUL COSMETICS Co. Ltd., R & D Cente) ;
  • Kim, Tae-Hun. (HANBUL COSMETICS Co. Ltd., R & D Center)
  • Published : 2003.09.01

Abstract

Unstable cosmetic active ingredients could be degraded rapidly by chemical and photochemical process. Particularly, some of active ingredients like retinol are known to cause skin irritation when applied on the skin excessively. Therefore, it has become a very important issue to encapsulate cosmetic actives for the stabilization and skin protection. This study was performed in order to prepare a chitosan microcapsule containing liposoluble cosmetic actives and to investigate the stabilization effect of actives when chitosan microcapsule was applied in cosmetic formulation. Chitosan, deacetylated form of chitin, has been of interest in the industrial applications due to its biocompatibility, biodegradability, non-toxicity, antimicrobial activity and also used as a wall material of capsule. Retinol was used as a core material and was stabilized by a wall of chitosan and antioxidants. The chitosan microcapsule containing retinol(CMR) was prepared by using coacervation method and W$_1$/O/W$_2$ emulsification techniques. The CMR has 0.5~10.0 ${\mu}{\textrm}{m}$ size distribution and a long-term stability of more than an year inside the cosmetic formulation(O/W). Remaining retinol percentages at 45$^{\circ}C$ after 8 weeks in the CMR dispersion were 15.6%(pH 4.0), 59.8%(pH 6.0) and 65.0%(pH 6.0 with antioxidant) respectively. Retinol stability when added CMR inside a ONV emulsion was better than that of ONV emulsion added non-capsulated retinol. As a result, remaining retinol at 45$^{\circ}C$ after 8 weeks in O/W emulsion added non-capsulated retinol and O/W emulsion containing CMR was 12.7%, 70.5% respectively. It appeared that chitosan treated microcapsule may be used for a potential encapsulation method of unstable active ingredients.

Keywords