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I. Introduction

The discrete cosine transform(DCT) has a wide
range of applications such as image coding, feature,
extraction, and so on. Since DCT produces excellent
spatial frequency of images, most of applications
adopting DCT are on image-related process. Thus,

the dimension of DCT must be 2 in most of DCT
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applications. Algorithms for fast calculating DCT as
well as for reducing computational complexity of
two~dimensional calculations are necessary. The
polynomial transform (PT) were reported to require
the
Compared with the row-column method, Polynomial

lowest operations of two-dimensional DCT.

transforms (PT) require only one half of the number
of multiplications and a smaller number of additions.
the
arithmetic

the polynomial transform have

potential

Therefore,

greatest toward lowest
complexity, but very little was done on the best
way of implementing polynomial transforms. In this
paper, the

algorithm that can be easily implemented.

we present polynomial transform

II. Computation of 2D-DCT-1I

The 2D-DCT-1I of the input sequences x{(n, ) is
defined by
Xk b= ggx(nm)oos—ﬁz%nﬁ cos_ﬂ(ZanﬁD_l

k=0,1,,N-% 1=0,1,, M—1 @
The constant scaling factors in the DCT definition
are ignored for simplicity. We assume that M and
N are powers of 2 and M=N. We can write
N=2! and M=2’/N where t>0 and J=20,
respectively.

The input sequences x{n,m) can be decomposed

into W, m) likewise. So,
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Kn,m)=x2n,2m) II1. Polynomial Representation of
HN—=1—n,m)=x2n+1,2m)
A, M—1—m)=x2n,2m+1) 2D-DCT-II
N—1—n,M—1—m)=x2n+1,2m+1
* " n:_-oj’...,lvr;lz_i 2 A(k ) and Bk D) are expressed by V7,
m=0,1,-, M2—1 therefore V ,()'s properties are A(kd's and
and Nt Bk, l)’'s. We define
=5 2(4n+1)k a{4m+ 1N R
Xk D= ,.Z;) mZ::by(n.m)oos o st @ { Y ,(2m) =3 ), m)
k=0,1,,N-1 =0,1,-,M~1 ¥, @m+ D)=y M—1—m),M—1—m)
Using the trigonometric formulae, (3) can be where m=0,1,--,M/2—1
_1 Therefore, (8) can be expressed into one dimensional
Computed by X(k, D— 2 [A(k, I)+Hk, 0]’ DCT—H
where M1 om+1)i
- V0= 2 3 ) cos[-H2HELE |
_uli Hdn+ Dk | _a(4m+1I s e 2M ,
Ak b= Z 5 sl cxs [ LR 4 2L | where p=0,1,+, N—=1,7=0,1,--, M~1 @)
k=01, N-1 I=0,1,~-M-1 4 .
P This means that 2D-DCT-II can be computed by
an

Ek,0=:§’g}(n,m)oos[j4”—l)—2; k—AA——D—?A}_ l]

k=0,1, N—1L i=0,1,-,M—-1. ()
In order to simplify (4) and (5), we define p(m) as
. m)=[(4p+1)m~+plmod N and then

4p(m) +1=(4dm+1)(4p+1) mod 4N
where p=0,1, -, N—1, m=0,1,-- , M—1.

By plugging p(m) into (4) and (5), we obtain
Ak D=5 5 sk, mycos | HAKIEVE | altem DI
R e

= ]El :Z;]:}(ﬁ(m), m)m[M%&M] . (6)

Also,
Bk = 51 5 o), ) o[ HAKBLA Dk (it 1 |
= 5 o, con | AUV Ut V=D ] (7

A(k D) and B(k, ) can be expressed via their
common factor of cosine, which is defined by
_ m+1)i
VD= 25 Hlm), mhcos| FAZLELL |
»=0,1,---,N—1; 7=0,1,-,M-1

Then,

N=1
Ak b= 2 V 2 (4p+1k+ 1)

®

)

and
N—1
Bk b= 2 V [24p+Dk—1]
1=0,1, -, M—1

(10
k=0,1,--,N—1;
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the sum of 1D-DCT-H, V ,(3).

The other properties of V' p(j) are
V,G+2M=(-D*V (3,

V,CM—-)= -V ,(, and

V=0, where j=0,1,---,M—1

These properties of V p(J)'S period are interpreted

by the 'mod’ operation, because these properties of
the periodicity are similar to the '‘mod’ operation in

polynomial which divider is z22+1.

Based on the properties of V ,{7), it can be proved
that

Al 2M—1) = g V [2 4o+ D2~ ]
— g v [2X4p+Dk—1]

—— Bk a1
and,
AR 0)=Bk0), AW H)=B0,). (12)
Now, define a generating polynomial such as
M=1 2M—1
Bk(z)-‘—‘ ;) Hk, l)z — ;{A(k, ZM— 1)2 / (13)

By substituting (10) and (11) in (13), we have
2M~1 N=1
BiA= 2 3 VA2 Wp+ Dk Dz’

from which A(k ) and B(k, ) can be derived. In

order to wuse the polynomial transform, the

mod (22Y+1) operation for B () is expressed by
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N—12M—1
B =5 > V27 (4p+Dk— Dz'mod 2 +1
= iﬁ_‘;ol m;fbl V(=2 (4p+ DRz mod 22 +1
= E‘ 2M_—1V,(I)Z 1+ 2p Dk g 2M 4y 14)
N—1 .
_=_[ > Uj2) 2* ]z“modzw+l
=C2z ¥ modz?+1
where
2M- 1 .
U (o= Zo V,,(J)z’modzz‘”+l
=
N=1
C (9= ;DU,(j)”z”kmodzz‘”+l (15)
k=0,1,~+, N—1, z=22""mod 2#+1.
We also generate A £2) such as
241 N=1 ;
A= 2 RV N2 TUp+Dk+ Dz
= =
k=0,1,-,N—1 (16)
which will be used in the Inverse-2D-DCT-L.
In addition, X K2) is defined as
241
X (2 = gb Xk, Dz*
=1(B2)+A (2) modz¥+1 a7

uhere  k=0,1,---, N—L

IV. Fast Polynomial Transform

U2) and C 2) are polynomial transforms that
can be computed by a fast algorithm. The
coefficients of U ,(2) are V,(#), which have the
symmetric property,

V,CeM-p=—V,0(), V,(M)=0

It indicates that the only half of the coefficients are
needed to express U ,(2). This property can be
expressed as

U d=U,(z")Ymodz+1, (18)

. M1 . o
Ufz7H= ;) V (Dz ~'mod z ¥¥+1
=

Based on this property, it can be proved that the
polynomial sequence C (2) also has a symmetric
property expressed as
Crf2=Cy(z HYmod z+1
that

(19)

which indicates about one half of the

coefficients C /e(Z) are necessarily computed.

1942

We define
CO,,O,, l...,,‘_l(‘z)= U RN (2)
. 1 i
Cynq“'n:—;-lkm‘“ko(z) = m_z,=0”. n,_2,=0 U” '_‘”'_Z'“”O(Z)
my 27 i tko 2 R R 2 R )
modz #+1, 20
uizere j: 1,2,.-.’ t

And, for #;.1=0 or 1 (20) can be expressed as

f =1
Cj”n‘“"x-;—lOk;—z"'kn(z) =C nyen :—:-10’?,—2‘“1’0(2)

+ O 1k (2 2 ‘mod 22+ @n
Cjn eon 171—11’3 '_2...;20(2) ECJ,,_OI,, 1—:—:0’2.’—3"*0(2)
=l k(@ 2 “mod 221 (22)

i~2 .
where =128 4= dez HH-

Equation (21) and (22) are the computational steps
of the fast polynomial transform algorithm. The

temporary outputs of each stage, which index is 7,

are Cin.,-nnA_,_,k,‘,n-kp(z) and each output has an
important symmetric property of (19). If we replace
the binary expression of the subscripts (0% ;‘—z"‘ko)
by % and (g7, ;) by 7 for simplicity, (21)
and (22) become

Crp s =03 #D+ 03, 500 (D Zmod 2441 (21"
O (Q=C0 {@ -0 500 @D T'md+1 (227)
F=0,1,,2"=L u=0,1,-,2"711.

Therefore, the output polynomials of each stage
have the following properties, which leads tc a
reduction of the computational complexity for (21')

and (22°) by one half as shown in (19).

Crpripiz =0 7(2) mod 22 +1
C, (2 " H=C, (2) mod 2M+1
Copraprilz V=0 (2 mod 2 2+1

k=0,1,-,271—1

c’!

"2 +k (Z) @ - Cr.éf & @)

. )
Cr‘rjzf +k+2/7 (Z) @_’ Cﬁjzf a2 (2
B 2 modz* +1

Fig.1. Butterfly operation
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These properties enable us to obtain
Co, 7@,27 H1<E27 -1 from Cly 3D 1< k<277!
Therefore, (21) and (22) need NM additions only. It
is noted from (13) that the Mith coefficient of each
output polynomial is B(k, M), which is not required
by our computation. Therefore, a further saving of
N/2—1 additions is available. In total, the number of
additions required by (15) for the fast polynomial
transform is NM log ,N—N/2+1,

Uy(2)

U(z)

U(2)

Ui

7=0

U@
Us(2)

oo < X/
U (2) ,,></\/ \c,<z)

= o3

Fig. 2. where N=8, the flow graph of
polynomial transform algorithm. Briefly, Fig.

1. is represented by X

Therefore, if it is assumed that our algorithm uses
the most computationally efficient fast algorithm for
1D-DCT-II of length M, the total number of

additions for 2D-DCT-N  are 3/2 NMlog,M
+ NMlog ;N - M—N/2+2 and the total number of
multiplications are 1/2NMlog oM

size R.C. Block factors P.T
s | e | W | we
A
o | i | VR | T

Table 3. Comparison of computational complexity
of 2D-DCT-I for an NxN block input. (a : the
number of additions, B : the number of

multiplications)

V. Conclusions

Based on a method of directly using the polynomial
transform in the computation of the 2D-DCT, this
paper presents a fast algorithm for 2D-DCT-IL
Symmetric properties of the polynomial are used to
reduce the computational complexity and the
computational structure is much more simplified
compared with other reported algorithms. So, the
simplified structure can make the implement of the
2D-DCT be easer than what it used to be.
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