2003 International Symposium on Advanced Intelligent Systems
September 25-28, 2003, Jeju, Korea

A Study for FIPA-OS Multi-Agent Framework in OSGi Service Platform

*Hyung-Jik Lee, Kyu-Chang Kang, Jeun-Woo Lee

Electronics and Telecommunications Research Institute, 161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350, Korea
(Tel : 82-42-860-1597, Fax : 82-42-860-6671, e-mail : leehj(@etri.re.kr)

Abstract: In this paper, we implemented a FIPA-OS
multi-agent framework bundle in OSGi Service
Platform. FIPA-OS is an open agent platform for
constructing FIPA compliant agent using mandatory
components that required by all FIPA-OS agents to
execution and optional components that FIPA-OS
agent can optionally use. The platform supports
communication between multiple agents and
communication language which conforms to the
FIPA standards. FIPA-OS framework bundle is
composed of DF(Directory Facilitator), AMS(Agent
Management System), ACC(Agent Communication
Channel) and MTS(Message Transport System)
bundle. These bundles installed in the OSGi service
platform and their life cycle can be managed by the
framework.

Keywords : OSGi, FIPA, FIPA-OS

L Introduction

Today, OSGi is the leading standard for the next-
generation Internet services to homes, cars, small
offices and other environments [1, 2, 3, 7]. It enables a
new category of smart devices due to its flexible and
managed deployment of services. To dynamically and
automatically manage the services in OSGi, it is
necessary for an agent service, such as remote
management and SNMP agent service. Therefore, the
agent framework and its technology should be
considered in OSGi. FIPA is a non-profit organization
aimed at producing standards for the interoperation of
heterogeneous agents, and FIPA-OS is the first open
source implementation of the FIPA standard. FIPA-OS
2 is a components-based agent framework implemented
Java [4, 5]. In this paper, we developed the FIPA-OS
multi-agent framework bundle in the OSGi service
platform. The FIPA-OS multi-agent bundle is comprised
of two types of bundle. One is a MTS(Message
Transport Service) bundle such as RMI(Remote Method
Invocation), ITOP(Internet-Inter ORB Protocol), and
ACC(Agent Communication Channel). Another is an
agent loader bundle.

I1. FIPA-OS(Open Source)

The Foundation for Intelligent Physical Agents, FIPA,
was formed in 1996 to produce software standards for
heterogeneous and interacting agents and agent-based
systems [4]. The purpose of FIPA is to promote the
development of specifications of generic agent
technologies that maximize interoperability within and
cross agent based applications. In the production of

these standards, FIPA requires input and collaboration
from its membership and from the agent’s field in
general to build specifications that can be used to
achieve interoperability between agent-based systems
developed by different companies and organizations.
This is encapsulated in FIPA’s mission statement.

According to the FIPA specifications, Emorphia
developed the FIPA-OS that is the first open source
implemented in Java. The FIPA-OS now supports most
of the FIPA experimental specifications currently under
development. The FIPA97, the first specification of the
FIPA, is produced in 1997, and FIPA-OS 2 is now
available.

The FIPA-OS 2 is a component-based toolkit
implemented in 100% pure Java. One of the most
significant contributions received is a small-footprint
version of the FIPA-OS, aimed at PDA’s and smart
mobile phones, which has been developed by the
University of Helsinki as part of the IST project
Crumpet [5]. The FIPA-OS 2 is an open source
implementation of the FIPA standards. The message
transfer among agents is possible through the message
transport system, and message transfer protocol is
HTTP, Remote Method Invocation (RMI), Internet-Inter
ORB Protocol (IIOP) and WAP. The message format is
implemented in XML, Agent Communication Language
(ACL) and KQML. The software stack of FIPA-OS is
shown in Figure 1.

Agent Specific Platform Agent Application
specific
Wrapper
Agent “Shell” . =
Agent “Shell”
Message Transport Service
Commumication
RML [IOP [HTTP, WAP| ACL, ..

Fig. 1. Software stack of FIPA-OS

The FIPA-OS is composed of three parts:
communication layer, agent shell and Application
specific service agent layer [6].

Agents can be built using agent shell. These are
implemented as Java base class with pre-defined hooks
into the platform to use platform service. The
FIPAOSAgent class provides a shell for agent
implementation to use by simply extending this class.
The FIPAOSAgent shell is responsible for loading an
agent’s profile, and initializing the other components of

232

which the agent is composed.

The MTS(Message Transport Service) provides the
ability to send and receive message to an agent
implementation. The MTS within FIPA-OS is logically
split such that incoming and outgoing messages path
through a number of services within a service stack.
This service stack is shown to Fig.2.

Agent

Incoming Message JL Outgoing Message

Service Stack{} {}

[Service 1 I

MTS

l Service 2 I

[Service 3 J

Fig. 2. Logical composition of the MTS

Each service is a stand-alone component that
performs some transformation on outgoing messages,
and the inverse transformation on incoming messages.

FIPA-OS currently comes bundled with MTP
implementations that are specialization of the MTPBase
class. The RMI transport is based upon Sun’s RMI
implementation that is part of the core Java 1.1 and Java
2 Standard Edition API. Due to the fact that this
transport relies upon the use of Java serialization to
encode messages, it is not interoperable with agents
written in languages other than Java. However, this also
means that it is much more efficient for communications
between agents written in Java. Thus this transport is an
internal MTP. The IIOP transport is based upon Sun’s
CORBA implementation that is part of the Java 2
Standard Edition APIL It is comphant with FIPA IIOP
MTP specification, and hence is potentially
interoperable with an agent written in any language that
supports CORBA, and this specification. Hence, this
transport is an External MTP.

III. The OSGi Service Platform
The OSGi service platform is composed of services,
bundles and entities [8]. Service is a Java object or
interface, and the bundle is a form of packaging for
service. It is also a functional unit with life cycle
operations and class loading capability. It contains well-
defined hooks that allow it to be plugged into the

framework.

The release 1.0 of the OSGi service platform was
developed in 1999, and now release 3 is available. The
components of the OSGi service platform are listed in
Table 1, and its software stack is shown in Figure 3.

Table 1. The package of the OSGi service platform.

Package Description

Framework
Configuration admin
Device access

Http service

10 connector

org.osgi.framework
org.osgi.service.cm
org.osgi.service.device
org.osgi.service.http
org.osgi.service.io

org.osgi.service.jini Jini service
org.osgi.service.log Log service
org.osgi.service.metatype Metatype

Package admin
org.osgi.service.permissionadmin { Permission admin
org.osgi.service.prefs
0sg.osgi.service.provisioning

org.osgi.service.packageadmin

Preference service
Initial provisioning
Bundle start levels
UPnP service

URL stream & content
User admin

Wire admin
Measurement utility
Position utility
Service tracker

org.osgi.service.startlevel
org.osgi.service.upnp
org.osgi.service.url
org.osgi.service.useradmin
org.osgi.service. wireadmin
org.osgi.util. measurement
org.osgi.util.position
org.osgi.util.tracker

org.osgi.util.xml XML parsers

The OSGi service platform release 3 includes support
for mobile service platforms and application where data
access is handled by a variety of secure service. Release
3 has reference architecture and remote management
reference architecture.

1fleue |y 301A3(]
ao1asag diuy
as1a1ag fop
391A10G 90UDIDJDL
wwpy uoyemfyuo)
19Y0B1] SDIAISG
ulwpy 19s)
201A19g J9siRd TINX
9DIAIIS UTWIPY 3 M
2J8IS PUE JUSUINSBIN
uosod
231A13§ 10123uu0) O]
anaseg il
201A135 Judn

Package Admin | Permission Adminl Start Level—[URL handler I

Framework

! Execution Environment J

Fig. 3. The software stack of the OSGi service
platform Release 3.

The Framework forms the core of OSGi service
platform. It provides a general-purpose, secure and
managed Java framework that supports the deployment
of extensible and downloadable bundles. The

233

framework manages the installation and update of
bundles in an OSGi environment in a dynamic and
scalable fashion, and manages the dependencies
between bundles and service.

In the OSGi service platform, bundles are the only
entities for deploying Java-based applications. A bundle
is comprised of Java classes and other resources which
together provide functions to end users and provide
components called services to other bundles, cailed
services. A bundle is deployed as a JAR files. JAR files
are used to store applications and their resources in a
standard ZIP-based file format.

In the OSGi service platform, bundles are built
around a set of cooperating services available from a
shared service registry. Such an OSGi service is defined
semantically by its service interface and implemented as
a service object. The service object is owned by, and
runs within, a bundle. This bundle must register the
service object with the framework service registry so
that the service’s functionality is available to other
bundles under control of the framework. Dependencies
between the bundles using it are managed by the
framework.

IV. FIPA-OS Multi-Agent Framework Bundle

The FIPA-OS is an agent-based open source
implemented in Java. It is comprised of message
transport service, content language parser, agent
management system and directory facilitator. So it is
necessary for agent communication and agent loader
bundle to develop the FIPA-OS framework bundle. The
message transport service bundle is deployed of RMI,
IIOP and ACC bundle. RMI and IIOP bundle act as
agent communication among included in the same and
different platforms. The ACC bundle is communication
language bundle that can tell FIPA communication
languages. And agent loader bundle start and shutdown
a service agent using a convenient loader GUI.

In this paper, we implemented the FIPA-OS
framework bundle and service agent bundle over the
OSGi service platform. The FIPA-OS bundle is
composed of two bundles. One is a MTS bundle such as
RMI, IIOP, HTTP and ACC. Another is an agent loader
bundle.

The initialization of the OSGi service platform is

shown in Figure 4. The MTS bundles and agent loader
bundle are installed and started in the OSGi service
platform.
In Figure 6, the result of the RMI bundle execution is
shown. The RMI naming service and the lookup service
can be enabled as registering of “RMINS” to the
RMIRegistry. The role of the RMI bundle is to support
a communication between agents in the same platform.

234

Fig. 4. The initialization of the OSGi service
platform.

Fig. 5. RMI bundle .

It has been designed to be more efficient than the
Internet-Inter ORB Protocol transport for inter-agent
communications, and can be used by any agent or the
Agent Communication Channel. Naming services
provide the mechanism for agents on a platform to
locate one another using a name resolution service. This
provides a mapping between the names of an agent and
there physical location, such other agents can interact
with them. In order for an agent to be located on a
platform, it must register with at least one naming
service that is used by the platform. In Figure 5, RMI
port number is 3000, and lookup service is enabled as
binding it to the agent communication channel, agent
management system and directory facilitator.

Fig. 6. The I1OP bundle.

The result of the IIOP bundle execution is shown in
Figure 6. The port number of the IIOP is 3000, and the
role of the IIOP bundle is to support a communication
between agents in a different platform. This is an
implementation of the FIPA IIOP specification, and can
presently only be used by the Agent Communication
Channel.

The execution result of the ACC bundle is shown in
Figure 7. The ACC bundle provides the ability for
agents on a platform to interact with agents on other
platforms by providing a message passing service.

In Figure 8, the execution result of the agent loader
bundle is shown. The running agents are agent
management system agent and directory facilitator. The
Known agents are iotestagent, swingdfgui and so on.

Tools

rRunning Agents - - - rKnown Agents
Jams « Start l" testagent
Lar] Lswil i

: : Start other... viswmgdfgun

: ‘ipingagent

. Shutdown >

Fig. 8. The gent loader bundle.

V. Conclusion

In this paper, we implemented the FIPA-OS multi-
agent framework bundle in the OSGi service platform.
The FIPA-OS multi-agent framework bundle is
comprised of two bundles. One is a message transport
service bundle such as RMI, IIOP and ACC. Another is
an agent loader bundle. Experiments are conducted on
the service agent communication and loading by the
agent loader bundle, and these bundles installed in the
OSGi service platform and their life cycle can be
managed by the framework.

References
[1] Condry M, Gall U, Delisle P, pen Service
Gateway architecture overview,” [EEE Industrial
Electronic Society, vol. 2, pp. 735-742, 1999
[2] Jordan D, “Java in the home: OSGi regidential
gateways,” Java Report, vol.5, no. 9, pp. 38-42,
2000
[3] K. Chen, L. Gong, Programming Open Service
Gateways with Java Embedded Server™
Technology, ADDISON-WESLEY, New York, 2001
[4] FIPA homepage. http://www.fipa.org
[5] FIPA-OS homepage. http://www.emorphia.com/EPL
[6] FIPA-OS V2.1.0 Distribution Notes.
http://flow.dl.sourceforge.net/sourceforge/fipa-
os/FIPA_OSv2 1_0.pdf
[7] OSGi homepage. http://www.osgi.org
[8] OSGi service platform, release 3.
http://www.osgi.org/resources/sp-r3/r3.book.pdf

235

