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Abstract

The Choquet-Stieltjes integral is defined. It is
shown that the Choquet -Stieltjes integral is rep-
resented by a Choquet integral. As an application
of the theorem above, it is shown that Choquet ex-
pected utility model for decision under uncertainty
and rank dependent utility model for decision un-
der risk are respectively same as their simplified
version.
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1 Introduction

About the decision theory under uncertainty, the
expected utility theory by von Neumann and Mor-
genstern [5] is well known. However, in recent years
the counterexample that human’s decisions do not
follow the expected utility theory is reported in var-
ious literatures. The Choquet integral with respect
to non additive set function, which is called with
various names, (e.g. fuzzy measure, non-additive
measure, capacity, non-additive subjective proba-
bility,) is a basic tool for modeling of decisions un-
der risk and uncertainty. We can explain the fa-
mous paradoxes, that is, Allais paradox [1] and
Ellsberg’s paradox [6] by using Choquet integral
model. To explain Allais paradox for decision under
risk, Rank dependent utility model are proposed
by Quiggin [9]. For Ellsberg’s paradox, which is
relevant to decision under uncertainty, Choquet ex-
pected utility model is proposed by Schmeidler [11].
After that, the simplified version in which the util-
ity function is not used, is proposed by Chateauneuf

[2].

In this paper we define the Choquet-Stieltjes inte-
gral and show that the Choquet-Stieltjes integral
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is represented by a Choquet integral. As an ap-
plication of theorem above, we show that Choquet
expected utility model (resp. rank dependent util-
ity model) is same as its simplified version.

The structure of the paper is as follows. In sec-
tion 2, we define the fuzzy measure and Cho-
quet integral and show their basic properties. We
present the Choquet integral representation theo-
rem of comonotonically additive functional. In Sec-
tion 3, we introduce two famous counterexamples
of classical expected utility models and define some
non-expected utility models. In Section 4 we de-
fine Choquet-Stieltjes integral and show that the
Choquet-Stieltjes integral is represented by a Cho-
quet integral with respect to another fuzzy measure.
As the corollary of the theorem, we show that Cho-
quet expected utility model (resp. rank dependent
utility model) is same as its simplified version. We
show that the simplified version is sufficient to ex-
plain the paradoxes mentioned above.

2 Fuzzy measure and Choquet in-
tegral

In this section, we define fuzzy measure, the
Choquet integral and show their basic properties.

Let S be a universal set and S be o— algebra of S,
that is, (.9, S) be a measurable space.

Definition 2.1. [13] Let (S,S) be a measurable
space. A fuzzy measure p is a real valued set
function, u : & — RT with the following proper-
ties;

(i) u(@® =0

(ii) pu(A) < p(B) whenever AC B, A,B € S.
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We say that the triplet (S, S, i) is a fuzzy measure
space if p is a fuzzy measure.

F(S) denotes the class of non-negative measurable
functions, that is,

F(S) = {flf : S = R*, f : measurable}

Definition 2.2. [3, 7] Let (S,S, 1) be a fuzzy mea-
sure space. The Choquet integral of f € F(S)
with respect to u is defined by

© [ fau= [ usorar,

where s (r) = p({z]f(z) 2 r}).

Suppose that § = {1,2,...,n}. The i—th order
statistic () [14] is a functional on [0,1]* which
is defined by arranging the components of z =
(x1,-+- ,Tn) € [0,1]™ in the increasing order

ZII(I)S"'Sm(i)S"'S%(n)-

Using the i—th order statistics, the Choquet inte-
gral is written as

(© [adu= Y = 2I)ull@) - (),
i=1

where we define (9 := 0.

Definition 2.3. [4] Let f,g € F(S). We say that f

and g are comonotonic if

f(z) < f(z") = 9(z) < 9(a")

for z,z' € S.

Definition 2.4. Let I be a real-valued functional on
F(S). We say I is comonotonically additive if and
only if I(f+g) = I(f)+1(g) for comonotonic f,g €
F(S), and I is monotone if and only if f < g =
I(f) < I(g) for f,g € F(S5).

Next we present that the comonotonically additive
functional I on F which satisfies a less restrictive
condition than monotonicity can be represented by
the Choquet integral.

Definition 2.5. [8] We say that a functional on F(S)
is comonotonic monotone if f < g implies I(f) <
I(g) for comonotonic f,g € F(S).

In the following we suppose that the functional I on
F(8) is comonotonically additive and comonotonic
monotone (for short c.a.c.m.). The next theorem
is less restrictive version of Schmeidler’s represen-
tation theorem [11].

Theorem 2.6. I is a c.a.c.m. functional on F if and
only if there exists a fuzzy measure p such that

1(f) = (C) / fdu
for all f € F(S).

3 Decision under risk and uncer-
tainty

In this section we present frames for decision under
risk and uncertainty and paradoxes that the clas-
sical expected utility theory fails. Next we present
the definitions of the Choquet expected utility and
the Rank dependent utility.

Let S be a state space and X be a set of outcomes.
We assume that outcomes are monetary. Therefore
we may suppose X C R. We mean, by ”decision
under uncertainty”, situations when there does not
exist a given objective probability. In decision un-
der uncertainty, we consider the set of function f
from S to X: we say the function f the act. F
denotes the set of acts, that is,

F={flf:S — X}.

~ denotes the weak order on F. We say that the
quadruplet (S, X, F, <) is the frame for decision un-
der uncertainty.

In contrast with decision under uncertainty, by ”de-
cision under risk, we mean situations when there
exists a objective probability on S. In decision un-
der risk, we consider the set P of probability on S
and the set of function f from S to X: we say the
function f the random variable. F denotes the set
of random variable. < denotes the weak order on
F. We say that the quintuplet (S, X,P,F,<) is
the frame for decision under uncertainty.

The next example is a famous paradox that fails
the expected utility theory of von Neumann and
Morgenstern [5]

Example 1. (Allais paradox [1]) Let the state space
S := {1,2,...,100} and the outcome X :=
{0, 100,200}. Define random variables fi,f2,f3 and
fa by fi(z) := 100 for all

200 1<z <70
€5, f(a) ’={ 0 71<e<100,
100 1<z<15

f3(=) :={ 0 16<z <100
200 1<z <10

and fu(z) := 0 11 < 2 < 100. fi means

that you always get 100 dollars. f» means that
you will get 200 dollars if you take a number 1 to
70 and you get none if you take a number 71 to
100. It is reported that not a few people choose
fi, that is, fo < fi. In the same way f; means
that you will get 100 dollars if you take number
1 to 15, and f4 means that you will get 200 dol-
lars if you take the number 1 to 10. It is reported
that not a few people chose fy, that is, f3 < f4 If

the probabilities are all the same, i.e. P(i) = 100

for all ¢ € S, this preference cannot be repre-
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sented by expected utility. In fact, suppose that
there exists a utility function u : X — Rt such
that f < g & E(u(f)) < E(u(g)), where E(-) is
the classical expectation. Since fs < fi, we have
0.7u(200) < »(100). On the other hand, it follows
from f; < f4 that 0.15u(100) < 0.1u(200). There-
fore we have 1.05u(100) < 0.7u(200) < u(100).
This is a contradiction.

The next example is Ellesberg’s paradox {6] for de-
cision under uncertainty.

Example 2. (Ellesberg’s paradox)

Consider the red and black and white ball in the
urn. The number of red is 30, black and white is
60. The number of Black is unknown. fr means
that you will get 100 dollars only if you take red
ball and fp means that you will get 100 dollars
only if you take black ball. Not a few people select
fr because there may be a few black ball in the
urn that is, fg < fr. frw means that you will
get 100 dollars if you take red or white ball and
fBw means that you will get 100 dollars if you take
black or white ball. Not a few people select fgw
because there may be a few white ball in the urn,
that is, frw < few. This preference cannot be
explained by the expected utility theory. In fact,
let the state space S := {R, B, W} and the set of
outcome X := {0,100}. The acts fr, [, frw
and fpw are defined by the table below. Suppose

30 60

Red | Black | White
fr | $100 0 0
fs 0] $100 0
frw | $ 100 0 $100
few 0] $100] $100

that there exists a subjective probability P such
that f < g & E(u(f)) < E(u(g)). It follows from
frw < few that u(100)P(B) = »(100)(P(BW) —
P(W)) > u(100)(P(RW) — P(W)) = u(100) P(R).
This contradicts fg < fgr-

To solve those paradoxes, the model using Choquet
integral with respect to fuzzy measure has been pro-
posed; that is, the Choquet expected utility model
for decision under uncertainty and the rank depen-
dent utility model for decision under risk. First we
define the Choquet expected utility model (CEU)
for decision under uncertainty, that is introduced
by Schmeidler [12].

Definition 3.1. Consider the frame of decision un-
der uncertainty. The Choquet expected utility
model stipulates that the decision maker ranks act
f with the help of a utility function © : R — R,
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which is continuous and strictly increasing. The
ranking C,, ,, of acts f is performed through

Cunlf) = (C) / w(f)dp,

that is, f < g < I(f) < I(g), where y is a fuzzy
measure (capacity).

Next we define the Rank dependent expected utility
model (RDEU) by Quiggin [9].

Definition 3.2. Consider the frame of decision un-
der risk. A decision maker behaves in accordance
with the rank dependent expected utility model if
the decision maker’s preferences < are character-
ized by two functions u and w: a continuous and
strictly increasing function u : R — R and a prob-
ability distorting function w such that f > ¢ &
J(f) > J(g) where J(h) := (C) [ u(h)d(w o P) for
a random variable h.

The next section we will present the solution of the
paradoxes using simplified CEU and RDEU model.

4 Choquet-Stieltjes integral

In this section we define the Choquet-Stieltjes in-
tegral and show that Choquet-Stieltjes integral is
represented by Choquet integral. Applying the the-
orem above, we show that the CEU and the RDEU
are same as their simplified version by Chateauneuf
[2].

Definition 4.1. Let (S,S,u) be a fuzzy measure
space and ¢ : Rt — R* be a non-decreasing real
valued function. Then we can define Lebesgue-
Stjeltjes measure v,,, [10] on real line by

Yoy ([a’ b]) = (Pf(b+0) - (pf(a - 0)

’/lpf((a'y b)) = (Pf(b - 0) - QOf(a + 0)

We define Choquet-Stieltles integral C'S,, ,(f) with
respect to u by

CSyelh) = [ " s () (),

where pg¢(r) = p({z|f(z) > r}).

If the space S = {1,2,...,n}, Using the i—th order
statistics, the Choquet-Stieltjes integral is written
as

CSue(f) = Z(w(r“)) ~ (@@ --- (M)

Since Choquet-Stieltjes integral is comonotonically
addtive and comonotonically monotone, applying
the representation theorem (Theorem 2.6), we have
the next theorem.



Theorem 4.2. Let (S,S,u) be a fuzzy measure
space and ¢ : Rt — R% be a non decreasing func-
tion. There exists a fuzzy measure v, , such that

CSuul(f) = (C) / v,

that is, the Choquet-Stieltjes integral can be repre-
sented by Choquet integral.

Suppose that ¢ is strictly increasing, Since
{zlf(2) > ¢~ (@)} = {zlo(f(2)) > a}, we have

©) / o(f)dp = CSpn(f)-

Therefore we have the next corollary.

Corollary 4.3. Let (S,S,u) be a fuzzy measure
space and ¢ : Rt — R* be a strictly increasing
function. Then there exists a fuzzy measure v, ,
such that

© [ ot0)du=(©) [ sdvn.

The corollary above means that the CEU (resp. the
RDEU) are same as its simplified version. Using
the simplified version, we can solve both Allais’ and
Ellsberg’s paradoxes.

Example 3.

(i) (Allais paradox) We can define the probability
distortion function w : [0, 1] — [0,1] such that
w(0.1) = 0.08, w(0.15) = 0.1 w(0.7) = 045
and w(l) = 1. Then it follows from the Cho-
quet integral C, with respect to the fuzzy mea-
sure p = wo P that C,(f1) =100 > C,(f2) =
90 and C#(f,g) =10< C,L(f4) = 16.

(ii) (Ellsberg’s paradox) We may define the fuzzy
measure such that u({R}) := 1/3, u({B}) =
p({w}) :=2/9,
p({R,W}):=5/9,
w({B,WY) = u((R,B)) 2/3 and
u({R,B,W}) = 1. Then we have the Cho-
quet integral C, of f. by the table below. The

I fr_| fB
Culfe) 1 1/312/9

few
273

frw
5/9

above table says that C.(fg) < C.(fr) and
Cu(frw) < Cu(fBw). Then there is no con-
tradiction.
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