2003 International Symposium on Advanced Intelligent Systems
September 25-28, 2003, Jeju. Korea

A Multiagent Approach to Integrating Bioinformatics Tools

Keon Myung Lee’, Bong Ki Sohn", Kyung Soon Hwang’, Young Chang Kim"
"School of Electric and Computer Engineering, Chungbuk National University, and AITrc
*School of Life Science, Chungbuk National University, Korea
kmlee @chungbuk.ac.kr

Abstract - Various bioinformatics tools for biological
data processing have been developed and most of them
are available in public. Most bioinformatics works are
carried out by a composite application of those tools.
Several integration approaches have been proposed for
easy use of the tools. This paper proposes a new
multiagent system architecture to integrate
bioinformatics tools in the perspective of workflow since
the composite applications of tools can be regarded as
workflows. For the easy integration, the proposed
architecture employs wrapper agents for existing tools,
uses XML-based messages in the inter-agent
communication, and agents are supposed to extract
necessary information from the received messages. This
allows new tools to be easily added on the integration
framework. The proposed method allows various control
structures in workflow definition and provides the
progress monitoring capability of the on-going
workflows. We implemented a prototype system of the
proposed architecture for annotating the genes of a
bacterium called Sphingomonas Chungbukensis DJ77.1

I. INTRODUCTION

With the advent of massive, high-speed sequencing
technologies such as short-gun method and efficient
assemble softwares, genomes have been being identified
for various organisms. In genome projects, very long
DNA sequences are randomly segmented into large
number of overlapped fragments of size 2 kb or so, and
the DNA sequences for the fragments are determined and
assembled into long contigs, and then these contigs are
combined into a genome map.[10] For the determined
genome map, ORFs(open reading frames) likely to
encode genes are found and their functions are estimated,
if possible, and pieces of related information including
gene functions are annotated to the genome database.
Many bioinformatics tools and databases have been
developed to support various tasks in genome projects.
Depending on target organisms and tasks to be carried
out and interests of study, researchers selectively use

' The work was partially supported by Korea Science and
Engineering Foundation (KOSEF) through AITrc (Advanced
Information Technology Research Center).

94

different tools among the available tools in different
ways. In order to choose proper tools, they need to
understand what they do, how to use them, and what
kinds of pros and cons they have. It is not easy to choose
appropriate tools needed to handle given tasks in some
situations if the users do not have enough knowledge
about the tools and databases. Most bioinformatics tools
and databases are provided through the Web and some
tools are published to be freely installed at local hosts. In
addition, it is sometimes burdensome to figure out the
input and output data formats for the tools.

To alleviate this kind of burdens, this paper proposes a
multiagent system architecture to provide intelligent
bioinformatics tool integration. Usually a sequence of
tools are used to process biological data. Therefore, such
sequences can be regarded as a workflow[2,3]. The
proposed architecture provides the bioinformatics tool
integration in a manner of workflow management. For
the easy integration of existing tools, their corresponding
wrapper agents[9] are supposed to be developed, which
make tools act as an agent in the multiagent framework.
For the inter-agent communication, XML(extensible
Markup Language)-formatted messages are used from
which agents are supposed to extract the pieces of
information needed without the sender’s explicit
indication of the information intended to the receiver.
This kind of communication strategy helps agents
integrated in a flexible way. Several integration
approaches have been proposed and now are in use[4-8].
Most of them take static integration strategy in which it
is not so easy to add on new tools.

This paper is organized as follows: Section II presents
the proposed multiagent architecture for bioinformatics
tool integration. Section III discusses the implementation
issues and an application example of the proposed
multiagent architecture. In final, Section IV draws
conclusions.

II. WORKFLOW-BASED MULTIAGENT SYSTEM
ARCHITECTURE FOR BIOINFORMATICS TOOL
INTEGRATION

A. The Architecture of the Proposed Multiagent System

Figure 1 shows the proposed multiagent architecture that
consists of user-interface agents. a workflow

management agent, a planning agent, a directory agent,
workflow instance agents, and task agents like wrapper
agents and special purpose agents. Through a user-
interface agent, a user (i.e., biologist or bioinformatician)
accesses and controls tools to be used for bioinformatical
processing, and retrieves the intermediate results of the
processing. The directory agent maintains information
about how and where tools and databases are used and
what they do. The planning agent plays the role of taking
the user’s task specification about what to do and
suggesting a workflow definition about how to process
the given task. The workflow management agent is
charge of coordinating and monitoring all workflow
instance agents. It instantiates a workflow instance agent
for each workflow. If requested by the user, it may
terminate an ongoing workflow. It also directs requests
from users to their corresponding workflow instance
agent. It collects statistical data for workflows and
involving agents, which can be helpful in future
decision-making. A workflow instance agent takes care
of an instantiated workflow. It plays the role of activating
proper task agents according to the workflow definition,
coordinating communication among task agents,
providing the retrieval service of the intermediate
processing results, updating some parameters of the
current workflow. Task agents refer to both wrapper
agents and special purpose agents. The wrapper agents
play the role of exposing the existing tools or
applications as an agent that behaves like an autonomous
entity that can communicate with other agents and
perform some processing. In addition, the wrappers
enable the wusers to use tools without thorough
understanding of their data formats and options. The
special purpose agents are agents devoted to special data
processing to which we cannot find appropriate tools.
Using theses kinds of task agents, bioinformatics works
are carried out.

Fig.1 The Proposed Multiagent Architecture

=
user

{{pledace agen]

< bt

g

N

In the architecture, there are several repositories as
follows: Tools/DBs information repository contains the
information about task agents which will be used in

95

workflows. It is actually a database for the directory
agent. Wrapper repository maintains the codes of
wrappers and other task agents. Only when such task
agents are needed, they are instantiated and start to work.
Workflow definition database stores the already-
developed workflow definitions. Intermediate result
repository plays role of a shared memory among task
agents. Task agents store their processing results to
Intermediate result repository, allows user to retrieve
intermediate results from the repository, and uses it to
exchange messages like a mailbox.

B. The Architecture of the Constituent Agents

Task agents
A task agent is instantiated by a workflow instance

agent, receives messages about assigned tasks from a
workflow instance agent and replies to it after processing
the tasks. It maintains default parameter values for the
designated tools or tasks. The default parameter values
might be overridden by the messages from a workflow
instance agent.

The messages to be handled in task agents are as
follows: Control messages to assign a new task to a task
agent, and to force an agent to terminate its processing.
Query message to be used to retrieve a processing state
of an agent. A task agent is in one of the following states:
Finished with Success, Finished with Failure, Timer-Out,
Terminated, Processing, Failed with no proper input
information, and Idle.

A task agent consists of the following modules:
Communication module to receive and send messages
and to parse the received messages and extract relevant
information from them. Task Control module to
coordinate the processing of the task agent that works in
event-driven manner where an event corresponds to a
kind of messages handled by the task agent. For the
intelligence processing, Task Control module contains
inference engine and thus it has both a Rule base to store
the rules and an Object base to maintain the state
information of the agent. Wrapping module to send a
request to the wrapped tool and to wait until it gets
response from the tool. In case of task specific agents,
they may contain multiple task-specific modules to
perform specific processing.

Workflow Instance Agents

A workflow instance agent takes care of a workflow
instance. It receives a workflow description from the
workflow management agent and produces its
corresponding internal data structure and representation.
It parses the XML message for the workflow description,
generates its corresponding directed graph which is used
to keep track of the progress of the workflow and to
allocate constituent tasks to task agents, and represents

the control structure information into a rule base. The
rule base is used to make decision about what actions it
will take. The states of tasks and local information like
parameters are maintained in the Object base. According
to the given workflow description, a workflow instance
agent instantiates task agents. For each instantiated task
agent, it creates an object containing the information
about its task agent ID, current state, starting time, time-
out flag, time-out value, associated rules’ IDs, and the
pointer to the produced output. It passes the related
information to the instantiated task agents. The
information to be handed over a task agent is the merged
result of successfully finished preceding task agent(s),
and parameters set up by the user. A workflow instance
agent finally generates an output by merging the outputs
of successfully finished task agents. A workflow instance
agent handles the following messages: Control messages
to assign a new workflow, to terminate a workflow in
process, and to deactivate a workflow instance agent.
Query messages to query the status of a workflow or
some tasks composing a workflow. A workflow instance
agent is in one of the following states: Finished with
Success, Finished with Failure, Timer-Out, Terminated,
Processing, and Idle. A workflow instance agent consists
of the following components: Communication module to
send and receive messages, to parse the received
message, and to generate the corresponding events for
the message and direct them to process control module,
Process Control module to instantiate task agents
according to the workflow definition, to monitor the
progress of workflow, Object base to maintain the state
information, Rule base to store the rules about control
flows of workflow, and Inference Engine.

Workflow Management Agent
The workflow management agent creates a new

workflow instance agent for a new workflow to be
managed, passes the workflow information to the created
agent, and deactivates the created agent later. The
messages to be handles are as follows: Control messages
to hand over a new workflow instance to be managed, to
terminate an ongoing workflow, and to deactivate a
workflow instance agent. Query messages to ask the state
of a specific workflow. The agent has the following
components: Communication module, Management
Control module, Object base, Rule base, and Inference
Engine.

Planning Agent
The planning agent provides an environment to

generate workflow plans. Due to the inherent difficulty
of workflow planning, the current design of the planning
agent keeps a collection of predefined workflow
definitions for bioinformatics works, recommends
candidates tools for tasks in a selected workflow

96

definition using a rule base system containing domain-
expert knowledge, and allows users to update and edit
existing workflow definitions and their control structures.
The agent consists of Communication module, Inference
Engine along with Object base and Rule base,
Management Control module working in event-driven
manner, and Graphical user interface for editing
workflow.

Directory Agent
The directory agent registers the information about

available tools and answers to the queries about tools. A
new tool can be integrated into the multiagent
architecture by registering its information to the directory
agent and its corresponding wrapper agent to the wrapper
repository.

User-Interface Agents

Through the user-interface agents, users are allowed to
initiate a new workflow definition, to activate, terminate,
and deactivate a workflow instance, to monitor the
progress of a workflow instance, to retrieve intermediate
processing results, and to tune the workflow instance
while it is in progress. All these functions are embodied
by exchanging messages with other agents.

C. XML-based Workflow Definition and Communication

To deal with the data format mismatches among tools
and databases, the proposed approach employs an XML-
based data representation. Both workflow definitions and
messages among agents are all represented by a XML-
based format. In a workflow definition, the employed
representation allows the following control structures to
accommodate flexible structures: sequence, fork, join,
choice, merge, fork with choice(s), choice with fork(s),
join with merge(s), and merge with join(s). The
following XML description expresses a fork with choices
structure, where three threads are forked wup after
finishing task ¢, but one of ¢, and #; is processed
according to their conditions.

<fork>

<base> <tid> f; </tid> </base>

<outgoing nthreads = 3>

<thread> <tid> 1;; </tid> </thread>

<thread> <choice nested = true>

<flow> <condition> condj; </condition> <tid> t;; </tid></flow>

<flow> <condition> cond;; </condition> <tid> f;; </tid> </flow>

</choice> </thread>

<thread> <tid> 14 </tid> </thread>

</outgoing>

</fork>
The tag names of data entities for biological information
are adopted from those used in NCBI system, and other
tag names are defined by us. Each message has a unique

message ID with which the response message is
identified in the receiver agent. Even though task agents
communicate with each other by sending messages, they
do not tell which information is intended to the receiver
agent. Task agents know which pieces of information are
needed to be extracted from the message. This strategy
enables to develop wrapper agents without consideration
of which agents to be invoked after the task agent.
Thanks to this strategy, existing tools and new tools can
be easily added on the multiagent framework.

1. IMPLEMENTATION

Each agent needs to respond to messages at any moment
even though it is taking care of some pre-occupying task.
Therefore, agents are implemented by Java as a process
with multiple threads, two of which threads are for
communication module and for timer-event generation
module. For the communication among task agents, the
proposed architecture employs the strategy to inform the
receiver of a new message by using Java Remote Method
Invocation (RMI) and then the receiver pulls the message
from the intermediate results repository. All messages
have a unique ID and the ID is used to retrieve messages
and to respond to the corresponding message.

To see the applicability of the proposed architecture,
we have been implementing a prototype system to
integrate bioinformatics tools for gene annotation,
especially of a bacterium called Sphingomonas
Chungbukensis DJ77[11].

A Glimmer

x,:“VP,hEp __4:: <, o
R P :

Figure 2. A workflow for the developed prototype
Figure 3 shows an input for a sequence data of the above

bacterium and its output for candidate gene functions.

oy <3419 tlgec 12 g a2A YK 3320 R 2724140325
kot atre suoohaba LAcKN g b ik by mGAC OTORNOED 0

s

Figure 3. An example of gene annotation
IV. CONCLUSIONS

This paper introduces a multiagent architecture for
bioinformatics tool integration. In the proposed
architecture, new tools can be easily added on by
developing their corresponding wrapper agents. For the
improvement of flexibility in agent communication, it
uses XML-format messages in which all information

needed by any receiver agent is contained. It manages
assigned tasks as workflows and provides mechanism to
control those workflows and to answer the queries. The
proposed architecture is very flexible to integrate new
tools thanks to its open multiagent architecture. We have
been developing a prototype system based on the
proposed architecture. In the experimental applications to
a bacterium gene annotation, several biologists have
expressed strongly positive expectations.

REFERENCES

[11 G. Weiss. Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence (eds.). The MIT Press. 1999.

[2] H. Schuschel, M. Weske, Integrated Workflow Planning and
Coordination. Proc. of the 14th International Conference on
Database and Expert Systems Applications, 2003.

{3] FE. Wan, S. K. Rustogi, J. Xing, M. P. Singh, Multiagent
Workflow Management, International Journal of Intelligent
Systems in Accounting, Finance and Management, Vol. 8,
pp.105-117, 1999.

{4] K.-H. Cheung, P. Miller, A. Sherman, S. Strtmann, M.
Schultz, et al. Graphically-Enabled Integration of
Bioinformatics Tools Allowing Parallel Execution, Proc. of the
2000 AMIA Annual Symposium, Nov. 2000.

{S1 S. Moller, U. Leser, W. Fleischmann, R. Apweiler,
EDITtoTrEMBL: A Distributed Approach to High-Quality
Automated Protein Sequence Annotation, Proc. of the German
Conference on Bioinformatics, 1998.

[6] D. Frishman, K. Albermann, J. Hani, K. Heumann, A.
Metanomski, A. Zollner, H.-W. Mwes, Functional and
Structural Genomics Using PEDANT, Bioinformatics, Vol.17,
No.1, pp.44-57, 2001.

[7] K. Bryson, M. Luck, M. Joy, D.T. Jones, Agent Interaction
for Bioinformatics Data Management, Applied Artificial
Intelligence, Vol.15, No.10, pp.917-947, 2001.

[8] P. G. Baker, A. Brass, S. Bechhofer, C. Goble, N. Paton, R.
Stevens, TAMBIS - Transparent Access to Multiple
Bioinformatics Information Sources, Proc. of the Sixth
International Conference on Intelligent Systems for Molecular
Biology, ISMB98, Montreal, 1998.

[9] L. Chen, H. M. Jamil, On using remote user-defined
functions as wrappers for biological database interoperability,
Int. J. of Cooperative Information Systems, Vol.12, No.2,
pp.161-195, 2003

[10] L. Hunter, Molecular Biology for Computer Scientists,
Artificial Intelligence and Molecular Biology (L. Hunter, eds.),
AAAI Press.

[11} S.-J. Kim, J. Chun, K. S. Bae, Y.-C. Kim, Polyphasic
assignment of an aromatic-degrading Pseudomonas sp., strain
DJ77, in the genus Sphingomonas as Sphingomonas
chungbukensis sp. nov., Int. J. of Systematic and Evolutionary
Microbiology, Vol.50, pp.1641-1647, 2000.

97

