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Abtract

To achieve accurate and efficient extraction of the fractal feature,

a progressive

extraction method is developed. After establishing the boundaries of the targeted surface by
enclosing it with internal and external covers, it determines the features of the surface by

calculating the characteristics of such covers.

1. INTRODUCTION

After the pioneer work by Mandelbrot[2],
fractal theory has been widely applied to many
branches of science. The key is accurate
fractal dimension estimation and counting
scales selection. Fractal dimension estimation
is the process of calculating the roughness of
an object In terms of dimension values by
using blanket [3] or box-counting approaches
(1, 4, 5. In this paper, we propose a new
data~dependent method to analytically
determine the accurate counting scale from the
original data. '

The remainder of this paper is organized as
follows. In Section II, the proposed progressive
fractal cover extraction approach is introduced.
In Section I, the experimental results are
given to illustrate the effectiveness of the new
data-dependent approach. In the last section,
the advantages of the new approach are
summarized.

2 THE PROPOSED APPROACH

In [1], the fractional box-counting scheme was
emploved to determine fractal dimension since
it separates base-measuring scale and counting
scale. The base-measuring scale is the scale
of mimmum resolution. The counting scale 1s
the size of the box. In this research, we focus
on determining the appropriate couniing scales
by further exploring the idea of statistical
similarity.

2.1 The Concept of Fractal Scale of
Similarity

The crux of our new approach is to measure
changes, then analyze the distribution of the
changes. Since a fractal set is a set
statistically similar to itself at different scales,
such changes congregate at different values,
We then set the counting scales to values
between congregations of changes. The goal is
to use a box [1] of a counting scale to
measure the micro properties of the surface
below the scale and maintain the macro
property of the surface above the scale,
Obviously, the macro property of the surface
is statistically similar to that of its micro
property. The scale is called the fractal scale

of similarity.

2.2 Determination of the Scale of
Similarity

The essence of fractal dimension estimation is
to measure changes. To determine the Fractal
Scale of Similarity, the spatial relationship of

the varances on a fractal surface is first

analyzed. Let surface Ss=H(X™) where H is
the Hausdorf space, X is the Euclidean space,
and m is the dimension of X. We define oy
as the base-scale and p(1), o(2),-,0(3) to
be the counting-scales in increasing order.
The counting-scales can be  determined
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progressively starting from o(1) to p(#n) in n
steps.

To find out the extreme points of surface
Y=S(x{,%xy,%,), we solve the following
systems of equations:

0

_éx}, S(xpxg,xm)zo, i:’liz'...’}n'

Let a extreme

the

; denote an
(xj1. X, Xm)

system of equations. Then, s, j=1,2,,n,

point

which satisfies above

describe where changes would occur in 8. Let
a; 7=1,2,---,n denote a set of the extreme
points a; j=1,2,>,n
To determine the spatial relationships of the
s, the distribution of the @y are analyzed.
Let &,=|a;—a ;4 l==» where y is a random
variable in Y, for all i=12, ... n-1 and plot the
§; for all j. Pentland [6] discovered that
images of natural scenes are fractal. If surface
S is fractal, &8s will congregate at a set of
values over the entire space. Figure 1 shows a
continuous curve fitting the histogram of the
set &8 The horizontal axis & describes the
distance between the extreme points. The
vertical axis N shows the distribution of such
relationship. A fractal surface & duplicates
itself at different scales. At a particular scale,
the local properties of a certain region on S
will be "duplicated” in other regions on S. In
other words, the local properties in various
regions are statistically  similar. At the
"duplicating scale”, the fractal presents further
details at that scale over the entire surface S.
By determining the peaks where changes
occur, the locations of the changes can be
computed. The actual duplicating scales for
these features can be determined by analvzing
the distribution of the extreme points.
Let T be a continuous curve fitting the
histogram of 3;'s. Then, set

oT

oy
to obtain extreme point set 1 ¢4 | (T

={)

Define the fractal similarity -scale A as:

Gt | o, el

;9,4.=31112lx{£*/e,{— o
integer, € ix the

where Kk is a
used Lo

minimun

positive
measuring  unit. [t i

guarantee that the £, increases at a minimum

of e-unit. In case when T is a flat line, B,

will have increasing value as k increases. £,

1s called the similarity-scale at step-k. The

counting scale can therefere be defined as:
olly=4, k=12,...

Note that p(k) increases as the computing
process goes from step k to step k+1,

2.3 The Similarity Cover Encapsulation
Let wos( 8;) be the multi~dimensional window
of support with radius 8, , € be the minimal
resolution. A similarity  cover is defined by
covers C; and C, that enclose surface S @
C\(8) = max { S(x, x, . 1) + &, max {S(x;, 23, =, 7,,)

P V(xy, g 0e, x e wos(B) )
Co{ 8) = min{ S(x; xy -+, x,) — &, min{ S(xy, x5, 7+, 2,,)

| V{x,xy, roews(8)))
(N

where S$(xy,x,, ..., %)= wos(8,) and
[ max {S(xy, x4, ..., 20} — min{S(xy. 9, ..., 2, J}> £ 85
Figure 2 shows a surface function y=5{x) in
2-D space where C, and C, are the covers
that encapsulate.

It should be pointed out that after the
"encapsulation” process, those variances that
are smaller than the similarity scale will he
encapsulated by similarity covers while
changes larger than the similarity scale will
remain intact.
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Fig 1. The histogram of & wowing the
distribution of the extreme points on
surface S
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Fig 2. Similarity Cover Encapsulation

2.4 The Similarity Cover Fractal Dimension
Let Vol (S) denote the space enclosing surface

S at counting scale o(n) where n is the n-th
step in increasing the counting scale. Then
Vol (S) can be obtained by calculating the
volume between the two covers.

If S is a fractal, then

L _Ln(Vol,,(S))}
D= i‘rﬁi{ Ln(o(n))

exists and the D is called the Similarity Cover
fractal dimension of S.

25 The Micro World: The Similarity Cover
Feature Set

To precisely describe the micro world ~ an
encapsulated region R(a,) centered around a;
on the surface S that’s smaller than similarity
scale, a set of features is extracted from the
region. First, we need to describe the size of
such region. Let (i be the maximum distance
between any two points in region R{aj.
Define the Similarity Cover Fractal Feature
Vi={a,B, 7,0} where a; is an extreme
point in H(X™), B is the set of similarity
scales with which S is measured, 7; is the

range, D; is the fractal dimension of region
R(e) on surface S. Statistically, the set
V={V;} describes the essential

characteristics of the Similarity Cover within
the micro world.

2.6 The Macro World:
of Similarity Surface

Let (XS} be similarity surface denoting the
interpolation of the two covers C)(S), Cy(S)

The Transformation

enclosing surface S. If S is a fractal, then
C(S) is also a fractal with the same features.
This is obvious since each set of similarity
covers only encapsulate variances smaller than
the last counting scale o(%) while keeping the
variances larger than p(&) intact.

Given a surface S=H(X™), we can obtain
the similarity surface (AS) and fractal feature
set {C(S), V} for all regions of S via (1). We
will show that {C(S), V} accurately describes
the surface S. To show that, we re-construct
S back from C(S) and V. Define
HAa, B, 7,D) to be the function generating

random Brownian surface in H(X™) at point
a; within range ¥; with fractal dimension Di

Then, operation €P is defined as:

O(S)® V = z‘;{ C( S;‘) + f(a;b igy 7}': DI)}
Theorem ¥ S = 9PV, § is
statistically similar to S.

Proof:

Given § , C(8) and V, Construct similarity
cover for S( with equation-1 for all regions of
S, i=L2, .

C($H -C (C(S')@V)
= (F((XS)‘?‘](G, B, v DY
= C,( Y(C(S)é“f(a‘ B.r. DM+ 5‘ Ci(S)
= 5" C;(C(S,)+f(a B.ra DN+ ?‘ C(S)
Yfmax{C(b) +Ka, 8,7, D) % :-:
max {C(S)+Ka, 8 7, D)+ Z'VQ(S;-)
= S [ max{a, (dseS)} + 7, +el+ T, C(S)
(34 Y
Similarly, at step &,
C;(S) = 2;‘)[ min{ai. (5%5655:)} - 7;“€]+C2(S,-)
Volume' = s¥C(8) ~ Co S
= g#| 5‘ 7’,+2*74~§~s* 716 (8,)~ Co{SH
ajtgtl S" e E AL

On the other hand, for S,

Volume = sx| C,(S)~ CA3)
= Jagk gvyil +Q%skg

= Volume, or Vol,= Vol; for all
ng"“'" p( k).
o | Ln(Vol,(S) }
b= I;“E{ Ln(o (1)
Ln(Vol, (S)) }
La(e(n)

So, Volume’

i=1, 2, .., n. Since p (B)=8,=

= Lim {

3o

=D
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S is statistically similar to S.

3. THE EXPERIMENTAL RESULT

One of the objectives of image analvsis is to
identify the surface features of an image. The
similarity cover theory provides a powerful
tool in describing the surface properties of an
image.

We can use the proposed approach to detect
edges, For edge detection purposes, the
window in focus should be as namow as
possible to include as few S-scales as
possible,  Since regression is used to estimate
the similarity cover fractal dimension, the
minimum number of similarity scales can not
be less than two. The fewer the similarity
scales, the sharper the edge. It should be
pointed out that the number of similarity scale
could be selected based wupon different
processing needs. The effectiveness of the
proposed approach are shown in Figure 3 with
a range image of a tool, a PET image of a
head, an MRI of a stomach and a photo
image. The edges are precisely defined and the
surface properties well preserved,

4, CONCLUDING REMARKS

We have proposed the Progressive Similarity
Cover approach  for  extracting  fractal
dimension and key features of an image with
accuracy and efficiency and have presented
several experimental results to corroborate the
new approach. The superiority of the new
proposed approach is in its data-dependent
scale selection. The new method can detect
the scales on  which the features are
statistically duplicated and is a powerful tool
fo extract fractal information.
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Fig 3. Edge detection
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