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Abstract— This paper presents a robust algorithm for edge
detection based on fuzzy fusion, using a novel local edge informa-
tien measure based on Renyi’s a-order entropy. The calculation
of the proposed measure is carried out using a parametric
classification scheme based on local statistics. By suitably tuning
its parameters, the local edge information measure is capable
of extracting different types of edges, while exhibiting high
immunity to noise. The notions of fuzzy measures and the
Choquet fuzzy integral are applied to combine the different
seurces of information obtained using the local edge information
measure with different sets of parameters. The effectiveness and
the robustness of the new method are demonstrated by applying
our algorithm to various synthetic computer-generated and real-
warld images.

I. INTRODUCTION

Zdge detection 1s a fundamental task in digital image
processing and machine vision. An edge is defined as the
boundary between two regions with relatively distinct gray-
level properties. Most edge detection techniques are based
ot the computation of a local derivative operator. However,
due to the presence of noise in most real-world images, it is
usually difficult to have an accurate estimation of the gradient.
Therefore, edge detection techniques based solely on gradient
operators are usually inefficient in the presence of impulse
noise in images.

Fuzzy sets theory [1] provides a flexible framework to
cope with the ambiguity and vagueness often present in
digital images. In addition, fuzzy sets theory offers the ability
of incorporating expert knowledge and human intuition into
digital image processing systems.

In this paper we present a robust edge detection scheme
based on a novel measure of local information of edges and
fuzzy fusion. The proposed method successfully retrieves true
eages while at the same time eliminates the influence of noise.

1I. Fuzzy MEASURES AND FUZZY INTEGRALS

A. Fuzzy Measures

Let X be an arbitrary set and {2 a sigma-algebra of subsets
of X. A set function g : 2 — [0, 1] defined on (2 is a fuzzy
mzasure if it satisfies the following conditions:

1) g(®) =0, g(X) =1 (Boundary conditions).
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2) If A B C 2 and A C B, then g(A) < ¢g(B)
(Monotonicity).

NI F, € forl £ n < oo and the sequence
{F.} is monotone (in the sense of inclusion), then
limy, o0 g(Fn) = g (imy 00 Fp ).

Sugeno {2] introduced the so called A-fuzzy measure satisfying
the following additional property:

g(AUB) = g(A) + g(B) + Ag(A)g(B) )

for some A > —1, where A,BC X,and AN B = 0.

Let X = {z1,%s,...,T,} be a finite set and let the fuzzy
densities of the A-fuzzy measure be defined as g* = g({z;}).
With boundary condition g(X) = 1, the value of A can be
found by solving the following equation:

n
A+1=]]@+2dY). )
i=1
It has been proved [3] that for a fixed set of g%, 0 < ¢¢ < 1,
there exists a unique root of A > —1, and A # 0 using (2).

B. Choquet Integral

Let (X, £2) be a measurable space and let A : X — [0,1]
be an (2-measurable function. The Choquet integral [4] of the
function h with respect to a fuzzy measure g is defined by:

/X h(z) o g() = /o " g(Ae)da, 3

where 4, = {z | h(z) > a}.
If X is a discrete set, the Choquet integral can be computed
as follows:

n

e=_ [h(z:) = h(zi-1)] g}, @
i=1
where
h(z1) < h(z2) < -+ < h(zy), (5)
with h(zg) = 0, and
j g({l:iv‘l:i-{-la"'vxj})ﬂ 1<.7w
g{- B {0, otherwise. ©)
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It should be mentioned that the Choquet integral reduces to
the Lebesgue integral for probability measures. Choosing the
appropriate fuzzy densities is very crucial for the application
of the fuzzy integral to image processing problems.

iII. PROPOSED METHOD
A. Local Edge Information Measure

Several information-theoretic measures have been developed
and applied to image processing and pattern recognition prob-
lems. For the edge detection it is expected that edge points
will carry more information than non-edge ones, since objects’
contours are the primary sources of stimulation of the human
vision.

In [5] Renyi defined the a-order entropy H, of a probability
distribution (py,ps,...,px) as follows:

1 k
— a
Ha—l_aln(;pn),

where a, with a # 1, is a positive real parameter. It should be
mentioned that the a-order entropy is a one-parameter general-
ization of the Shannon’s entropy Hg, since lim,_,; H, = Hg.
In order to calculate the local edge information measure for
the (i,7)-th pixel, we use a sliding w X w window centered
at the (,7)-th pixel. We consider the sub-image at each
window position as an independent information source with
k (# 1) possible symbols sy, s2,...,8k, with sy = 0 and
sx = L—1, where L is the number of gray levels in the image.
The distance between two sequential symbols, i.e. s; and its
preceding symbol s;_1, is s — s;—1 = £==. The pixels inside
the window W are assigned to their nearest source symbol s,
according to their gray levels, using the following rule:

Q)

£ = {9ijld (9ij, 5n) < d(gij,5m), for each spzn} (8)

with m,n = 1,...,k. d(-) is a distance measure, g;; € W
is the gray level of the (i,j)-th pixel and £, is the set of
pixels inside the window W classified as the n-th symbol s,
of the source. Let us denote by £ the set of pixels belonging
to window W. It is evident that:
k
g=J2L. and £.NELnpn=0 ©)
n=1

The estimated probability ps, of the n-th symbol s, of the
source, computed as frequency of occurrence, is given by:

I1€nll _ NI€nl
Ps, = = (10)
el w?
where || - || is the cardinality of a set. The local edge

information measure for the (i, j)-th pixel is defined as:

k(; ;. . 1 u a
HE (i, j,w) = R _a)lnkln (;psn> . (11)

If a pixel’s gray level is equidistant from two symbols, it is
assigned to the symbol with the smallest index. The local
edge information measure depends directly on the number &

(2) ®) ©

Fig. 1. Sliding window centered at (a) smooth region, (b) noisy pixel and

(c) edge.

of possible symbols. For the problem of edge detection we
consider as an intuitive lower bound of k the number of three
symbols (classes). This is justified if we consider the case of
the window being centered at an edge. Then three classes are
involved, one corresponding to the edge itself and two more
corresponding to the regions to both sides of the edge. As the
number of classes increases, the measure becomes in general
more sensitive to secondary edges of the image, but at the same
time to the presence of noise. Therefore, there is a tradeoff
between detailed edge extraction and noise suppression. Since
(11) is an entropy measure that reaches its maximum value
when all symbols are equiprobable, the number of classes
cannot exceed w?. This is a mathematical constraint that
practically can be overridden in order to control the sensitivity
of the measure. The main difference between the entropic
local edge information measure and typical edge operators,
i.e. Sobel or Prewitt that are just different approximations of
the derivative at a pixel location, is that the proposed measure
reflects the ability of pixels in a region to be classified into
different classes. .

Equation (11) has some interesting properties. Consider the
three possible situations shown in Fig. 1, where the number
of symbols is set to kK = 3. When the window is centered at
a pixel belonging to a region of constant intensity, the local
edge information measure assigned to the center pixel is zero
regardless of the value of parameter a. This is due to the fact
that all symbols’ probabilities are zero except for the one that
corresponds to the class of the constant intensity level which
has probability one. In the case when the center pixel is an
impulse noise pixel, then its gray level will be significantly
different from its neighbors. This means that the symbols’
probabilities involved will be close to one and zero, thus
assigning a small value to the local edge information measure.
When the center pixel is located at a true edge which divides
two smooth regions, it is evident that the three symbols’
probabilities are equal, which results in the maximization of
the measure. The dependence of the local edge information
measure to the number k& of possible symbols can be clearly
seen in Fig. 2. As the number of symbols increases new types
of edges emerge, due to the different ways the pixels are
classified to their nearest source symbols.

Using Renyi’s entropy instead of the one proposed by
Shannon, has the advantage that by varying the parameter a,
we can control the behavior of entropy to different probability
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Fig. 2. (a) Initial image. Edges detected using the local edge information
measure with (b) £ = 3 and (¢) kK = 9 possible symbols. Parameter a was
fixed to a = 20 and the window size was set to 3 x 3 pixels.

vialues. When a — 0, small probability values have large
influence to the entropy value, thus making the local edge
information measure more sensitive to noise. As a increases,
the influence of small probability values decreases, making the
measure immune to noise while producing thinner edges. The
behavior of the local edge information measure to changes of
the parameter a is illustrated in Fig. 3.

B. Edge Detection by Fusion

Fuzzy integrals have been widely used for classifier fusion
inn many applications [6]. In [7] and [3] fuzzy integrals
have been applied for image processing and computer vision
tasks. Fuzzy integrals are generalized mean operators ranging
between min and max. Their main characteristic is that fuzzy
imtegrals are weighted operators whose weights are defined
not only on different attributes, but also on all the subsets.
This allows the representation of importance and interaction
between attributes [8]. Moreover, it is believed that fuzzy
integrals are the only operators at present which can model
this type of interaction [9].

By varying the set of parameters of the local edge infor-
mation measure, that is the number of possible symbols £,
the parameter o of Renyi’s entropy and the size w of the
sitlding window, different edge maps can be obtained that
contain different types of edges, while at the same time the
mnfluence of noise in the produced edge map can be controlled.
Since suppression of noise is a desired property for every edge
detector, we select large values for the parameter a, a choice
that is justified by the analysis performed in Section I1I-A.

In the first stage of the proposed algorithm, a set of edge
images is obtained using different sets of parameters for
the calculation of the local edge information measure. The
parameters are selected in such a way that the resulting edge
maps to contain different types of edges, i.e. strong and/or
weak edges. 1t should be mentioned that according to the
properties of the local edge information measure low values
of k extract primary edges, while for large values of k both
syong and weak edges can be extracted.

In order to calculate the fused edge map from the set of
edge images, the only information required is the selection of
the fuzzy densities which stand for the degree of importance
3signed to each of the images of the set. The higher the value
of the fuzzy density assigned to an image, the more important
the influence of this image is to the final fused edge map. The

@ ©)

Fig. 3.  (a) Initial computer-generated image contaminated with “salt &
pepper” noisc with density d = 0.03. Edges detected using the local edge
information measure with (b) a = 0.2 and (¢) ¢ = 20. The number & of
possible symbols was fixed to k = 3 and the window size was set to 3 x 3
pixels.

fusion of the data sources obtained after applying the local
edge information measure with different set of parameters can
be implicitly expressed as:

e(i,§) = FHS (3, j;wn), Ha? (4, s wa), - .., Hen (4, 5 wm)],
(12)
where e(i,7) is the gray level of the (i,j)-th pixel of the
fused edge image, F is a fusion operator, and H} (i, 5;w1),
1 € 1 € m, are the gray levels of the (i, j)-th pixels of the
images derived by the local edge information measure with
parameters ki, a;, and w;. Due to the definition (11) of the local
edge information measure the H,’f,’ (4,5;wy), for L <1 < m, is
in the range [0, 1].
Applying the discrete Choquet fuzzy integral as the fusion
operator, the (4, 7)-th pixel of the fused edge image e(i, j) is
given by:

e(i,5) = Y (HF (i, 53w) — HE-1(i, j3wi-1)) g(Am),

=1
(13)

ko(; s —
where H;0(i, j; wo) = 0.

C. Outline of the Algorithm

1) Given an image f.

2) Given the parameters a;, k7, and w;, compute the local
edge information image H¥!.

3) Repeat step (2) with different sets of parameters in
order to obtain the images H¥2, Hf3, ... HEm.

4) Given fuzzy densities, compute the fused edge im-
age e by applying the fusion operator to the images
HF HEk2 . HFr, as described by (13).

ay * az "

IV. EXPERIMENTAL RESULTS

The proposed method has been tested using various syn-
thetic computer-generated and real-world images with and
without or presence of noise. For the fusion stage of our
algorithm we have considered three different information
sources obtained using three different sets of parameters for
the calculation of the local edge information measure. For the
simulation we have used gray-scale images of size 256 x 256
pixels with 8 bits-per-pixel gray-tone resolution.

Fig. 4 demonstrates the performance of the proposed fusion
scheme based on the local edge information measure. Figs.
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Fig. 4. (a) Initial image. Edges detected using the local edge information
measure with (b) k = 3, (¢) kK = 5 and (d) k£ = 9 possible symbols. Fused
images using fuzzy densities (¢) g1 = 0.9, g = 0.5, g3 = 0.3 and (f)
gl = 0.8, g2 = 0.3, g® = 0.9. Parameter a was fixed to a = 20 and the
window size was set to 3 x 3 pixels.

4(b)-4(d) show the intermediate images derived using the
local edge information measure with k = 3,5 and 9 possible
symbols respectively. The parameter a of Renyi’s entropy was
fixed to a = 20 and the window size was set to 3 x 3 pixels.
Two different sets of fuzzy densities were used in order to
extract different types of edges from the initial image. Fig. 4(e)
illustrates the result of the fusion of the intermediate images
with fuzzy densities g' = 0.9, g = 0.5, and g = 0.3. The
fuzzy densities were chosen in such a way that the fused image
to highlight primary edge but at the same time to contain a
small portion of edges of other types. In Fig. 4(f) the fuzzy
densities were set to ¢ = 0.8, g°> = 0.3, and g = 0.9,
in order to preserve both the primary edges contained in the
image of Fig. 4(b) but at the same time we considered as
more important the edges contained in the image of Fig. 4(d).
One observes that the proposed method successfully extracts
different types of edges. Finally, in order to demonstrate the
robustness of the presented method to the presence of noise,
we applied the proposed method the the noisy image of Fig.
5(a). The image was contaminated with “salt & pepper” noise
with density d = 0.05. Figs. 5(b)-5(d) illustrate the images
derived after applying the local edge information measure. In
order to suppress the noise, we have selected a window size
of 5 x 5 pixels and we have set the parameter a to a = 20.
The number k of possible symbols was set to £ = 3,4, and
6 respectively for the three intermediate images. Fig. 5(e) is
the fused image using fuzzy densities g' = 0.5, g2 = 0.6,
and g3 = 0.9. The result after applying the Sobel operator
to the image of Fig. 5(a) is shown in Fig. 5(f). From the
comparison of the images obtain using the proposed approach
and the Sobel edge detector, one observes that the presented
algorithm exhibits high immunity to noise while preserving
the edges of the image. On the contrary, the image derived by
the Sobel operator contains a large amount of noise.

@

Fig. 5. (a) Initial image contaminated with “salt & pepper noise” with density
d = 0.05. Edges detected using the local edge information measure with (b)
k = 3, (c) k = 4 and (d) k = 6 possible symbols. (¢) Fused image using
fuzzy densities ¢! = 0.5, g2 = 0.6, g3 = 0.9. (f) Edge image obtained
using the Sobel operator. Parameter a was fixed to a = 20 and the window
size was set to 5 x 5 pixels.

V. CONCLUSION

In this paper we present a robust algorithm for edge detec-
tion based on fuzzy fusion. Moreover, we introduce a novel
descriptor of edges using the local edge information measure
based on Renyi’s a-order entropy. The proposed method is
parametric and can be suitably tuned to extract different types
of edges from an image, according to the parameters of
the local edge information measure and the selected fuzzy
densities for the fusion stage. Furthermore, by adjusting the
parameters the proposed method exhibits robustness to noise.

Our future works involve an automated selection of the
fuzzy densities directly from the input data. Finally, we are go-
ing to extend the notion of the local edge information measure
in the context of image denoising and contrast enhancement.
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