Shifting reproductive mode of a mycotoxin producing-fungus by manipulation of mating-type genes

  • Lee, Jungkwan (School of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Teresa (School of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Yin-Won (School of Agricultural Biotechnology, Seoul National University) ;
  • Yun, Sung-Hwan (School of Agricultural Biotechnology, Seoul National University) ;
  • Gillian Turgeon (Department of Plant Pathology, Cornell University)
  • Published : 2003.10.01

Abstract

In most ascomycetes, a single mating type locus, MAT, with two alternate forms (MAT1-1 and MAT1-2) called idiomorphs, controls mating ability. In heterothallic ascomycetes these alternate idiomorphs reside in different nuclei. In contrast, most homothallic ascomycetes carry both MAT1-1 and MAT1-2 in a single nucleus, usually closely linked. An example of the latter is Gibberella zeae, a producer of mycotoxins such as trichothecene and zearalenone that threaten human and animal health. We asked if G. zeae could be made strictly heterothallic by manipulation of MAT. Targeted gene replacement was used to differentially delete MAT1-1 or MAT1-2 from a wild type haploid MAT1-1 MAT1-2 strain, resulting in MAT1-1;mat1-2, mat1-1;MAT1-2 strains that were self-sterile, yet able to cross to wild type testers and more importantly, to each other. These results indicated that differential deletion of MAT idiomorphs eliminates selfing ability of G. zeae, but the ability to outcross is retained. To our knowledge, this is the first report of complete conversion of fungal reproductive strategy from homothallic to heterothallic by targeted manipulation of MAT. Practically, this approach opens the door to simple and efficient procedures for obtaining sexual recombinants of G. zeae that will be useful for genetic analyses of mycotoxin production and other traits, such as ability to cause disease.

Keywords