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Clustering Using Quadratic Distance Measure Between Densities
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We derive a simple clustering algorithm which partitions the given data by minimizing overlap between
clusters. For simple implementation and less complexity, Parzen window density estimation and
quadratic distance measure between densities are adopted.

1. Introduction

Stephen et al. have suggested a clustering algorithm based
on information theory and shown good clustering results by
minimizing the entropy of cluster posterior [1, 2]. They
partitioned the data by minimizing the overlap between
clusters after density estimation using mixture of gaussian,
which is required a lot of careful attention.

In this paper, we start from the idea suggested in [1], and
derive a similar clustering algorithm but much simpler and
easier to implement. We estimate the density of data using
Parzen windows and calculate divergence by quadratic
distance measure between probability density instead of
using mixture of gaussian and Kullback-Liebler divergence.
After reviewing some related methods in Sec. 2. and 3., we
derive our algorithm in Sec 4 and 5. And some experiment
results are given in Sect 6.

2. Minimum Entropy Data Partitioning

We begin by briefly reviewing the method of minimum
entropy data partitioning[1,2] since this idea is a starting
point for our method. In maximum certainty data
partitioning, one constructs candidate partition models for
data sets in such a way that overlap between partitions is
minimal.

Let us consider a partitioning of the data into a set of K
clusters. The probability density function of a single datum
X , conditioned on a set of K partitions, is given by

()= p(x]i)p(i) )
i=1
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The overlap between the unconditional density p(x) and
the contribution to this density function of the jth partition,
p(x|i). is measured by Kullback-Liebler(KL) divergence
between these two distributions:

(2

V,==KL[ p(x| )| p(x)]
which is upper-bounded by 0(Since KL divergence is
always nonnegative). When the ith class is well-separated
from all others, v is minimized.

The total overlap over a set of K partitions, V', is defined
by

vu —ﬁ PG,

—Zp(:) jp(xlz)log[

(3)
p(x1i)
p(x)

Jo

It follows from Bayes’ theorem that £q.(3) can be rewritten

as

X X

-Ip(x)(z pi| x)log p(i| x)]dx +2 p)log pi) (4
i=1 i=t

= [peH G 0dx - HG)

consists of the expected
class posteriors and the

The total overtap measure V
(Shannon’ s) entropy of the
negative entropy of the priors. Therefore minimizing v is
equivalent to minimizing the expected entropy of the
partitions given a set of observed variables [1,2].
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Alternatively, we can rewrite the total overlap measure ¥ in
(3) as

V=2 pli) [plx|log p(x| ) + [ p(x)log p(x)dx
-[H(X)—Zp(i)H(XIi)]

Minimizing the total overlap measure is equivalent to
minimizing the expected entropy of class~conditional
density.

3. Quadratic Distance Measure Between Densities

Principe et all derive quadratic distance measures for
probability density functions somewhat heuristically {3,4].
In case of density estimation using Parzen window it gives
simple calculation for divergence between two densities.
The difference of vectors inequality

x-yY (x-y)20 x| +|y[ - 2x"y 20 6)

gives the expression
K (f>8)= [f(0) s+ fg(xyax -2 [f(gxyax  (7)

It is easy to see that the measures are always positive, and
when f(x)= g(x) the measure evaluate to zeros.

4. Clustering using Parzen window and Quadratic Distance

For a continuous random variable x e ¢ whose realization
is given by {x"}”_l where N is the number of data points,

the probability density of x estimated by the Parzen
window using a Gaussian Kernel is given by

8

N
px) =+ 6,07
N
where
= x.['
G(x,x,,0°) = —-exp 2|
2752 )2 20

And we can write i th class(denoted by C,) conditional
density as

p(xli):NliG(x,xL,az) ()]

i n=3

where x' eC, and N, is the number of data points
belonging to C, . We can rewrite Eq. {10) using indicator

variables { z,”} as
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p(xlt)———Zz G(x,x,,07) (10)

,nl

where
1 if x,eC
z, =
" 0 otherwise
and ¢
na y=>»z-
Institutively, the indicator variable can be considered as

posterior, i.e. z = p(i|x,)-
Incorporating the density estimated by Parzen window into
quadratic distance measure, Eq. (7), leads to

-K [p(x 1)1l p(x)]
= [p(x| ’dx— [p(xydx+2 [p(x i) p(x)dx
1 2

]z z/Gz, -—1 "Gl+-—12'G1
N N? NN,

11)

where G e0 ™™ by [G] A =G(x,.x,,20") and [2] =z,-

in a similar way of the previous section, the total overlap
can be written as

K
V=Y piy,

,=|K (12)
=-2POK: [p(x1 D] p0)]

_1 X, 72'Gz,
N

A
which is reminiscent of the Eqg. (5). The second term of last
equality in Eq. (12) can be considered within—cluster
association. Therefore minimization of overlap between
partitions is equivalent to maximization of within—cluster
association

lGl
N

—]:Tﬁizm 2,G(x,,X,,20°) (13)

i n=tm=1

M

5. Maximization of Within—Cluster Association

We adjust the indicator variables, {zm}, to maximize the
within—cluster association (13). {Z,,.} have to be bounded

[0.1], so we parameterize the indicator variables using a
generalized logistic function of the form

_ exp[ ] ‘(14)

ZeXP[ '
e=!

The gradient of (13) with respect to g, is given by
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where, L= lfGZ,- /N/
TheaLj /321,, and az,,. /39,,. are given by

! (16)
—= z,G(x,,x,,26") - —L
82 Nj; N
oz,
= 20~ )

in

ifi=]j

where 5 1 .
0 otherwise

'/

Therefore the gradient is written as
L -_—

X
BOZ

in J=t

S,

j’l l‘j_z Zz

n“ jn

1
V(ZZZMG(MMJG) L)( ) (8

The updating rule with Eq.18 can be implemented in a
couple of lines using Matlab.

6. Numerical Experiments

We carried out two experiments. The data sets and
clustering results are shown in Fig t and 2 respectively.
Each one is consisted of five and three clusters. The
boundary of the first data set is linear and can be easily
partitioned. But the second data set has a highly non-linear
boundary. Thus it cannot be separated easily. K-means
algorithm definitely fails to partition the data. The suggested
algorithm separated both of the data sets perfectly.

7. Discussion

Starting from * Minimum Entropy Data Partitioning’ [1,2],
we derived a simpler clustering algorithm. The density is
estimated by Parzen window and the complexity and
calculation, however, is simplified by using quadratic
distance measure for densities [3,4]. The updating rule can
be implemented in a couple of lines of codes using Matlab.
Lastly, the experiments showed the promising results.
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Fig 2. Experiment 2



