Mining the Secondary and Tertiary Structures Elements of RNA from the Structure Data of PDB

RNA의 이차 구조 요소 및 삼차 구조 요소를 추출하기 위한 PDB 구조 데이터 마이닝

  • 임대호 (인하대학교 전자계산공학과) ;
  • 한경숙 (인하대학교 전자계산공학과)
  • Published : 2003.10.01

Abstract

이제까지 Protein이나 RNA와 같은 분자의 구조는, 대부분 X-ray crystallography나 Nuclear Magnetic Resonance (NMR) 방법을 통해 분석이 이루어 졌다. 이 방법들은 실제 분자를 직접 원자레벨에서 분석하는 방법으로, 분자를 구성하는 모든 원자의 3차원 좌표 정보를 얻어 낼 수 있다. 원자의 3차원 좌표 정보는 분자의 전체적인 모양과 구조를 이해하는데 유용한 정보이다. 하지만, 분자의 구조를 좀 더 완벽히 이해하기 위해서는 원자 레벨의 좌표 정보 보다는 좀 더 높은 차원에서의 구조 정보가 필요하다. 특히 분자의 구조를 예측하거나, 분자들 사이에 결합 관계를 예측하기 위해서는, 원자 레벨의 정보만으로는 필요한 모든 정보를 얻을 수 없다. 이러한 경우, 분자의 2차원 또는 3차원 구조 요소 (structural elements)가 더욱 좋은 정보를 제공해 줄 수 있다. Protein 분자의 경우. 이미 3차원 좌표 정보를 이용해서, 2차원 구조 요소를 알아내는 자동화된 방법이 알려져 있다. 그러나 RNA의 경우 protein에 비해 알려진 결정 구조가 적기 때문에. 아직까지 2차원 구조 요소나 3차원 구조 요소를 알아내는 자동화된 방법이 알려져 있지 않다. 따라서, 이제까지는 RNA의 구조 요소를 알아내기 위해, 사람이 직접 RNA분자의 3차원 좌표 정보를 분석함으로써 많은 시간과 노력이 필요했다. 이 때문에, 우리는 RNA의 원자들의 3차원 좌표 정보를 이용해서, 2차원 구조요소와 3차원 구조 요소 정보를 자동화된 방법으로 밝혀내는 알고리즘을 개발하였다. 우리는 분자를 구성하고 있는 원자들의 3차원 좌표 정보를 Protein data bank (PDB)에서 가져왔다. 우리의 알고리즘은 PDB file형태의 데이터라면 protein-RNA 복합체나 RNA 분자 모두에서 RNA의 2차원 구조 요소나 3차원 구조 요소를 얻어낼 수 있다. 우리의 연구는 RNA의 원자레벨의 3차원 좌표 정보를 이용해서 RNA의 구조 요소를 뽑아내는 첫 번째 시도로, 우리의 알고리즘을 통해 얻어진 구조 정보는 RNA의 구조 예측 연구나. protein-RNA complex의 결합 예측 연구에 많은 도움을 줄 수 있으리라 기대된다.

Keywords