한국정보과학회:학술대회논문집 (Proceedings of the Korean Information Science Society Conference)
- 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
- /
- Pages.736-738
- /
- 2003
- /
- 1598-5164(pISSN)
최적의 유전자 클러스터 분석을 위한 퍼지 c-Means 알고리즘 기반의 베이지안 검증 방법
Bayesian Validation Method based on Fuzzy c-Means Algorithm for Analysis of Optimal Gene Clustering
초록
수천 개의 유전자 발현 정보를 가지고 있는 DNA 마이크로어레이 기술의 발달로 대량의 생물정보를 빠른 시간 내에 분석하는 것이 가능하게 되었다. 유전자를 분석하는 방법 중 하나인 클러스터링 방법은 비슷한 기능을 가진 유전자들을 집단화시켜서 집단내의 유전자들의 기능을 밝히거나, 미지의 유전자를 분석하는데 이용되고 있다. 본 논문에서는 유전자 데이터를 분석하기 위한 퍼지 클러스터링 방법과 이를 효과적으로 검증할 수 있는 베이지안 검증 방법을 제안한다. 퍼지 c-means 알고리즘을 사용하여 클러스터를 생성하고, 클러스터 결과를 기존의 퍼지 클러스터 검증 방법들과 본 논문에서 제안하는 베이지안 검증 방법을 사용하여 비교 평가한다. 베이지안 검증 방법은 각 유전자의 클러스터 멤버쉽을 확률로 이용하여 각 클러스터에 속할 확률을 계산하고, 이 값을 가장 크게 해주는 클러스터 집단을 선택한다. 이 방법은 기존의 퍼지 클러스터 검증 방법들과는 달리 클러스터 수에 무관한 평가가 가능한 장점을 가지고 있다. Serum과 Yeast 데이터에 대한 실험 결과, 베이지안 검증 방법의 유용성을 확인할 수 있었다.
키워드