한국정보과학회:학술대회논문집 (Proceedings of the Korean Information Science Society Conference)
- 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
- /
- Pages.604-606
- /
- 2003
- /
- 1598-5164(pISSN)
로컬영역에서 다중 특징을 이용한 물체인식
Object Recognition using Multiple Local Features
초록
본 논문은 향상된 Scale Invariant Feature Transform (SIFT) 기법과 이로부터 얻어진 로컬 특징 영역에서 다중특징을 이용한 물체인식 방법에 대하여 논하였다. SIFT 기법 [1]은 물체의 크기. 회전. 3차원 좌표변환에 강인한 특성을 갖는다. 이 기법에서는 크기가 다른 가우시안 (Gaussian) 함수를 적용한 영상들의 차이에서의 최대 및 최소값이 특징점으로 결정된다. 하지만 SIFT 알고리듬의 특성상, 인식되어야 될 물체의 비교적 큰 크기 변화, 중요도가 낮은 특징점들의 추출, 그리고 서로 다른 물체에서 추출된 유사한 특징벡터등이 인식 시스템의 신뢰도를 저하 시킬 수 있다. 이에 대응방안으로, 본 논문에서는 상대적으로 낮은 인식정보를 갖는 추출된 특징점을 제거하기 위한 기법과 서로 다른 물체에서 생성된 유사 특징벡터의 구분을 위한 특징점에서의 방위 (orientation) 비교법 및 색차 (chrominance) 정보를 사용에 대하여 기술하였다.
키워드