질의어 자동수정을 이용한 메타시소러스 검색 방법

The Method of Searching Metathesaurus, Using Automatic Modified a Query

  • 김종광 (인하대학교 전자계산공학과) ;
  • 하원식 (인하대학교 전자계산공학) ;
  • 김태용 (인하대학교 전자계산공학) ;
  • 류중경 (인하대학교 전자계산공학) ;
  • 이정현 (인하대학교 컴퓨터공학부)
  • 발행 : 2003.10.01

초록

UMLS(2003AA edition 기준)의 메타시소러스는 다국어를 지원하며 875.233개의 개 (concept)과 2,146,897개의 개념명(concept name)을 포함한다. 현재 UMLS 메타시소러스 검색을 제공하는 PubMed나 NLM에서는 UMLS에서는 개념명에 존재하지 않는 잘못된 질의나, 잘못된 구문 또는 개념명의 일부를 이용한 검색이 불가능하다. 이는 사용자가 UMLS에서 정보를 얻기 위해서는 정확한 의학용어를 숙지해야 되며. UMLS 메타시소러스의 데이터가 잘못 되었을 경우 정보를 얻을 수 없다. 본 연구에서는 이러한 문제점을 보완하기 위해서 자연어처리에서 연구되고 있는 문자열 간의 유사도 측정방식을 적용하여 잘못된 질의어에 대한 자동수정 기능을 이용한 메타시소러스 검색방법을 제안한다. 제안한 방법에서는 질의어를 자동수정하기 위하여 철자사전을 자동으로 추출하고 문자열 비교알고리즘을 도입하여 질의어와 철자사전간의 용어의 유사도를 측정한다. 유사도에 의하여 얻어진 용어를 메타시소러스의 형식에 맞게 변환하여 질의에 대한 최적의 결과를 얻을 수 있도록 한다. 제안된 방법의 성능을 평가하기 위해서 최근(2003년 8월) bi-gram 방식을 도입한 NLM에서의 시스템과 비교 평가한다.

키워드