XPDL £4 44<& A% UML HEH[E tolojahe &%

An Extension of UML Activity Diagram for Generation of XPDL Document

S5 AAR FEF B
Wang Bo’ JaejungKim Cheol-Jung Yoo Ok-Bae Chang
Software Engineering Lab., Department of Computer Science, Chonbuk National University, Korea
wanghicky’@empal.com jajkim@gcs.chonbuk.ackr {¢jyoo, okjang}@moak chonbuk.ac kr

Abstract

Currently there are a variety of different tools may be used to analyze, model, describe and document a business process. However, it is difficult

to exchange the information of a business process created in different tools because of the distinct information formats used in different tools. The

XML Process Definition Language (XPDL) of the Workflow Management Coalition (WfMC) forms a common interchange standard that enables

products to continue to support arbitrary internal representations of process definitions with an import/export function to map to/from the standard at

the product boundary. Generally a business process model can be represented by the UML activity diagram, but there is a difficult task to directly

generate an XPDL document from a business process model represented by the standard activity diagram. In the paper we will propose an approach

to generate an XPDL document from a business process model represented by the extended UML activity diagram.

Keyword: XPDL, process definition, UML activity diagram

Introduction

The XPDL specification uses XML as the mechanism for process
definition interchange. A Process Definition is defined as: The
representation of a business process in a form that supports automated
manipulation, such as modeling, or enactment by a workflow
management system. The process definition consists of a network of
activities and their relationships, criteria to indicate the start and
termination of the process, and information about the individual
activities, such as participants, associated IT applications and data, etc.
[1]. The UML activity diagram also can create business process model
in forms of sets of activities and transitions between them [2] [3][4]. So
it is possible to map the business process model, which is represented
by UML activity diagram, to the process definition organized in XPDL.
Hence the paper will propose a method of generating an XPDL
document from a business process model represented by an extended
activity diagram. For the purpose of this paper, the terms process
definition, business process model, and workflow model are all
considered to represent the same concept, and therefore, they are used
interchangeably.

The paper consists of four sections. The following section discusses

247

issues for related works. The method of a mapping from the business
process model represented by extended activity diagram to the XPDL
document will be depicted in the third section. Section 4 presents our

conclusion and future work.

Issues for related work

Currently a tool for business process modeling has been
implemented, which could create extended activity diagram for
modeling business process. In order to make the generated business
process model available for other modeling tools, there must be a
common interchange standard existing for information exchange
among the diverse tools. Fortunately XPDL uses XML, which is the
current industrial standard of data information organization and
exchange, as the mechanism for process definition interchange referred
in previous section. Now the key problem is how to generate a XPDL
document from a business process model represented by UML activity

diagram. The following section will propose a solution.

Mapping from Business Process Model to XPDL Document
Accord to the structure of XPDL document [1], the task of the

20039 5 A 1A ThE

g4 E=54 Vol 30. No. 2

mapping actually is to generate the corresponding information in the
format of XPDL from each element in source business process model and
put the information into the appropriate positions in XPDL document
structure. Figure 1 shows a table which shows the associations between

the elements of extended activity diagram and entities in XPDL.

Eleme Description Correspanding
notation entdy in XPDL
A start state explicitly o
. shows the beginning ofa | Route activity.
workflow.
An end state explicitly o
@ shows the endof a Route activity.
workflow on an activity
lagram,
An activity with thetype of Aho"g‘ﬂ“. h"‘""“"_
“No Inplementation” s g emextaton
@ which is implemerted by | 20" O,
marnal procedares. P aticn”.
An activty with the type of -
“Tool” whose A "reg_xlax" activity
C) implementtion is supported | whose implementation
by (one ox more) type is “Tool”
application(s).
An activity with the fype of " . e
@ | Spie vhichis A rgial aticty
Implemerted w e lfflslzlbm“fmn
by another process. type s flow”.
Vertical/Horizontal . L.
I e Transition restriction
mnm::eﬁr forks | ith the attrbute of
| parallel workflow. Joinfspit
Fromone state to another Toansiti
— | state whan certain axsEion
conditions are satisfied
A decision represents a S
specific Jocatonon an :?outg aclwﬂmth i
<> activity diagram where the ra;tsrt:v}:t }?(;R o o
workflow may branchbased | T type.
upon guard conditions.

Figure 1. The associations between the elements of extended

activity diagram and the entities in XPDL

® The mapping of “start state” and “end state” element

The “start state” and “end state” element can be mapped to the
“Route activity” entity defined in XPDL. The Route Activity isa
"dummy" Activity that permits the expression of "cascading" Transition
conditions. A route activity has neither a performer nor an application
and its execution has no effect on workflow relevant data or application
data {1].

Figure 4 shows an example of XPDL representation of “Start state”
element. The “Id” attribute is used to identify the activity and the
“ExtendedAttributes” attribute are the optional extensions to meet
individual implementation needs. The “TransitionRestrictions” attribute will

be discussed later.

<dctivity Id="5">
<Description>This is a startl</Description=
<Routef>
<ExtendedAttributess
<Extendedd ttribute Name="Coordinates "=
<xyz:Coordinates xpos="35" ypos="389"/>
</ExtendedAttributer
</ExtendedAtirbutes=
<fhctivity>

Figure 4. The XPDL representations of “Start state” element

® The mapping of activity element
An “Activity” element can be mapped to a “regular” activity entity
with one of three different Implementation types, which is defined in
XPDL: No Implementation, Tool, and Subflow. “No Implementation”
type means that the implementation of this activity is not supported by
workflow using automatically invoked applications or procedures.
“Tool” type means that the activity is implemented by (one or more)
tools. A tool may be an application program. “Subflow” type means
that the activity is refined as a subflow. The subflow may be executed
synchronously or asynchronously [1]. Figure 5 shows an example of
XPDL representation of “Transform Data” activity with “Tool” type.
<Activity I[d="17" Name="Transform Data"=
<Implementation=
<Tool Id="transformData" Type="4PPLICATION">
<ActualParareters>
<ActualParameter~orderString=/ActualParameter=
<ActualParameter=orderInfo</A ctualParameter>
<fActualParameters=
<fTool»
</Implementation>
<TransitionRestrictions>
<TransitionRestrictions
<Split Type="XOR">
<TransitionRefs>
<TransitionRef Id="40"
«TransitionRef [d="21"/>
</TransitionRefs»
«/Split>
«/TransitionRestriction>
<fTransitionRestrictions>
<ExtendedAttrbutes=
<ExtendedAttribute Name="Coordinates"»
<xyz:Coordinates xpos="102" ypos="389"
</ExtendedAttribute>
</ExtendedAtirbutes=
<fhctivity»

Figure 5 XPDL representation of activity element with “Tool” type.

® The mapping of synchronization element
A synchronization element can be mapped to a transition restriction
entity with the attribute of join/spit, which is defined in XPDL. A join
“corresponding to a join in synchronization describes the semantics of
an activity with multiple incoming transitions. A split corresponding to

a fork in synchronization describes the semantics where multiple

248

20034

£ 3HuH3 She SevE

=%3 Vol. 30. No. 2

outgoing transitions for an activity exist. Both join and spit have the
types of “AND” and “XOR™[1]. Figure 6 shows an example of XPDL

representation of synchronization element.
<Activity 1d="9">
<Routef>
<TransitionRestrictions>
«TransitionRestriction>
«Split Type="AND">
«TransitionRefs>
<TransitionRef Id="1"f>
<TransitionRef Id="38"f>
<TransitionRef 1d="2"f>
<fTransitionRefs»
</Split=
</TransitionRestriction=
<fTransitionRestrictions>
<ExtendedA tixbutes=
<ExtendedAttribute Name= "Coordmates">
<xyz.Coordinates xpos="572" ypos="389"%
</ExtendedA ttribute>
</ExtendedAttributes=
<fActivityr
(a)
<A ctivity 1d="33"»
<Routes>
<TransitionRestrictions>
<TransitionRestriction=
<Join Type="AND">
</TransitionRestriction=
</TransitionRestrictions»
<Extended& ttributes=
<ExtendedAttribute Name="Coordinates"=
<xyz:.Coordinates xpos="725" ypos="391"/>
</ExtendedAttribute=
</ExtendedAttributes>
</Activity>
()

Figure 6 XPDL representation of synchronization element of {a) fork
(b) join

® The mapping of transition element

A transition element can be mapped to a transition entity defined in
XPDL. The transition entities describe possible transitions between
activities and the conditions that enable or disable them (the transitions)
during workflow execution.[1] Figure 7 shows an example of XPDL
representation of transitions element.

<Transitions>
<Transition Id="1" From="9" To="8"f>
<Transition Id="2" From="2" To="11">
<Transition Id="16" From="11" To="33"f>
<Transition Id="17" From="8" To="33">

«Condition Type="OTHERWISE"f>

«fTransition>

<fTransitions»

Figure 7 XPDL representations of transitions

® The mapping of decision element

A decision element can be mapped to a route activity entity with

249

transition restriction of spit with XOR type, which is defined in XPDL
[1]. Figure 8 shows an example of XPDL representation of “Check
Order Type” decision element.
<Activity Id="12" Name="Check Oxder Type">
<Route/>
<TransitionRestrictions=
<TransitionRestrictions
<Split Type="XOR">
<TransitionRefs>
<TransitionRef [d="24"/>
<TransitionRef Id="25"#
</TransitionRefs»
</Split>
</TransitionRestriction>
«TransitionRestrictions»
«ExtendedAttvibutes>
<ExtendedAttrimte Name="Coordinates">
<xyzCoordinates xpos="293" ypos="460"t>
</ExtendedAttribute»
</Extendeditirvibutes=
<fhctivity»
Figure 8 XPDL representation of “Check Order Type” decision
element
Now we have proposed the method of the mapping from the business
process model represented by extended activity diagram to XPDL
document. The complete structure of XPDL document and the related
detail information about associated XPDL entity definitions should be
referred to in XPDL specification [1].

Conclusion and Future Work

In the paper we proposed the approach of the mapping from the
business process model represented by extended activity diagram to XPDL
document. However, the mapping of the element of “Swimlane” in UML
activity diagram still can not be performed because of the lack of
associated entities defined in the XPDL. In the future we will do more

research work to solve this problem.

References

[1] Workflow Management Coalition (WfMC),2002, Workflow Process
Definition Interface-- XML Process Definition Language(XPDL)
specification, electronic edition

[2] Object Management Group (OMG), 2002, OMG Unified Modeling
Language Specification, electronic edition.

[3] Rational, 1997, UML Notation Guide, version 1.1. electronic
edition

[4] Hans-Erik Eriksson, Magnus Penker, 2000, Business Modeling with
UML: Business Patterns and Business Objects, John Wiley & Sons Inc
[5] Alexander, 1, A,1998, A Co-Operative Task Modeling Approach to
Business Process Understanding, workshop on Object-Oriented

Business Process Modeling, ECCOOP 98.

