The trend of packaging technology in Japan

Seiko Epson corporation
Production engineering and
Development Department
Kazumi Hara

Contents

- 1. SiP technologies and the latest issues
- 2. DLS packaging technology in Seiko Epson DLS stands for Die Level Stack

SIP technology and the latest issues

Development of Packaging technology

Advantage of SiP

◆Features

- High performanceSophisticated functions ,Body shrinking
- Quick delivery
- Match with merchandise life cycle
- Expectation for high yield KGD are available

Classification of SiP

Package stack

♦Features

- Most flexible for design
- •Material cost increase, because some substrates are required
- Applications of the original technologies of the company

Sharp ,NEC, Toshiba, North
DT Circuit technology, NASDA,Kyosera

NMBI North

System block module (Paper Thin Package) Toshiba

Toshiba

Chip stack (connection by wire bonding)

FCB

◆Features

- The conventional packaging technologies and machines are available.
- •Low cost
- Quick delivery

♦ Venders

NEC, Hitachi ,Fujitsu, Sharp, Mitsubishi, Seiko Epson, etc

Image

FCB+Wire bonding Seiko Epson

4 layer stacked package From the website of SHARP

Chip stack (direct chip connection)

♦Features

- Extremely small and light
- ® The shortest line length

Good for high frequency circuits

CREST Tohoku University

©Restrictions in design (chip scale, pad layout, etc)

Collaborations between IC benders and packaging benders are needed

♦ Venders

Tohoku university	Wafer on wafer
Fujikura	Wafer on wafer
Aset	Chip stack
Seiko Epson	Chip stack
Rohm	Chip stack (Face to face)

Comparison of types of structure

♦Summary

Evaluation terms	Do also on oto als	Chip stack	Chip stack	
Evaluation terms	Package stack	wire bonding	with vias	
Size and weight	weak	better	excellent	
Usage of existing chips	possible	some limitations	special chip only	
Flexibility for design	exellent	some limitations	some limitations	
Time to delivery	quick	quick	weak	
Cost	high material cost	better	better	
Neccesity of investment	a little	none	a lot	
Sprit of inovation	original	conventional	progressive	

The latest issues

◆ Needs of thin wafer

• Mass production : 140um (Seiko Epson)

• Under development : less than 100um

◆Difficulties of thin-wafer-handling

Warpage of wafer

Crack

Warpage of wafer

Crack of wafer

Wafer support system WSS

- **◆**Concept
 - Reduction of damage
 - Easy handling
- **◆**Requirement
 - Easy on, easy off
 - Endurance

Various kinds of methods proposed

Supporting material	Adhesive	Separating	Minimum thickness	Ф12	Bump absorbability	Investment	Vender
PET	UV release tape	UV+peeling	50um	difficult	30um	no need	
Glass	UV release tape		25um	possible	30um	need	Sekisui chemical
	UV Resin	laser	25um	possible	50um	need	Sumitomo 3M
	Wax	heat	25um	possible	<10um	need	?
Stainless	Magnet sheet	peeling	50um	possible	?	need a little	Sumitomo 3M

Example of GWSS in Sumitomo 3M

Wafer support system WSS

- ◆Development status of WSS
 - Many support methods have been proposed.
 - Among them, PET-support-method is available now.
 - Methods using another support are under development.
 - The hardship is the easy separation in practical cases.

DLS packaging technology in Seiko Epson

10 layers stacked package

15

Package structure

Image of Trial Package (Section View)

Structure of Through-type Electrode

Sample Specification

Package	
Туре	Substrate type
Size	5mm x 5mm
Thickness	0.65mm (typ)
Ball Pitch	0.75mm
Number of I	ayers 4
<u>Chi</u> p	
Thickness	50μm
I/O count	120
Via pitch	150um
Via diamete	r 35um

Features of DLS package in Seiko Epson

- ◆Simple process
 - C Less numbers of processes possible.
- Through type electrodes under Al pads
 - No area for vias is required.
 - No redistributing lines are required.
- Low cost

Process

Formation of holes insulation and parrier/seed layer

- Scallop-free hole openings were achieved.
- High-speed etching was achieved.
- Adequate coverage was confirmed on sides and bottom of hole.

Leakage of Insulation Layer

• Leakage current between adjacent posts: order of several hundred (fA).

Copper plating for filling

- ◆ Filling results (6 inch wafer)
 - $\bigcirc \Phi 25$ to 40 um / Depth: 70 um via filling achieved
 - Filling achieved within 6-inch area (including center and edge)

Thinning of wafer and formation of terminals on back surface

- Handling of thin wafers
 - In this case, two layers of protective tape are applied before grinding.
- ◆ Thinning and exposure of terminals
 - Back grinding
 - Spin etching

Terminals on back surface

Terminals from side view

Formation of terminals on back surface

◆ Terminal polishing

- Terminal surfaces covered with SiO2 are ground to expose copper.
- Polishing are used to form terminals.

• Copper surfaces formed by polishing were confirmed, and SiO2 was confirmed on sides.

Formation of terminals

Post height before and after polishing

Stacking

◆Connection

- Sn-Ag is applied to terminals of active surface by plating
- Sn-Cu alloy junction
- Flux for both activation of Cu surface and pre-attachment of chips

♦Features

Reflow process is available

No pressure

High productivity

•Flexibility of height differences of each terminals or chip warpage

Stacking

- ◆Stack by Reflow Process
 - The reflow method starts by pre-pressing all of the chip layers, then soldering by heating the ambient temperature.
 - ©Cu-Sn alloy confirmed at junctions

4 layers stacked package

Cross-section view

Cross-section view of junction

Cleaning and Molding

- ◆Cleaning Direct pass method
 - Good for narrow gap
 - ○No damage to thin chips and connections

No flux remains

- ◆Molding Vacuum filling method ^{Ch}
 - Adequate filling among chips

Optimization of resin is an absolute must.

Hardening shrinkage causes crack of chip.

Chip surface after the cure

Electrical characteristics of through-type electrode

- ◆ Measurement of transmission characteristics
 - Transmission characteristics are indicated by S parameters (S21 and S12: transmission parameters)
 - Network analyzer is used for measurements

Measurement of transmission characteristics

Electrical characteristics of through-type electrode

- ◆ Measurement results
 - $^{\circ}$ At 2 GHz, S21 = -0.813 dB
 - Estimated value per via is -0.4 dB or less

Transmission characteristics measurement results

Testing of wafers after circuit formation

- ◆ Effects of process on transistors
 - © Transistor operations were confirmed after process
- ◆ Formation of through-type electrodes under Al pads
 - Through-type electrodes can be formed under Al pads

Hole in Actual Wafer

Conclusion

- ◆ Results for trial packages in general
 - Confirmed ability to form through-type electrodes
 - Basic electrical characteristics were ascertained
- ◆ Basic technology was established
 - Formation of holes using dry process
 - Voidless copper plating and filling
 - Wet etching and formation of posts on back surface by polishing
 - 4 layer stacking of thin chip using reflow process

Issues for the Future

Technical issues

- Further refine various elemental technologies
- Confirm and ensure reliability
- Support technologies for wafer thinning
- Confirm and further improve high-frequency characteristics
- KGD confirmation methods

♦ Other issues

Study new business models