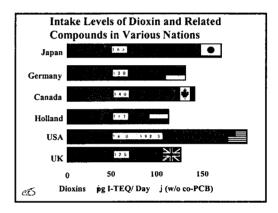


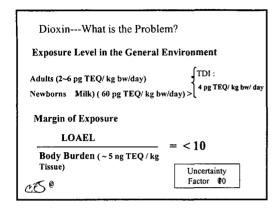
Natural	LD 50 Man-made ((g/kg bw)
Botulinus Toxin Tetanus Toxin Schigella Toxin Tetradotoxin	10-9
	10-8
	10-7
	10-6 2,3.7,8-TCDD (Guinea Pig)
	10-5 2;3,7,8- TCDF
	10-4 Sarin
	10-3 2,3.7,8-TCDD (Hamster)
	10-2 Mustard gas
Nicotine -	Potassium Cyanide
Caffeine	DDT

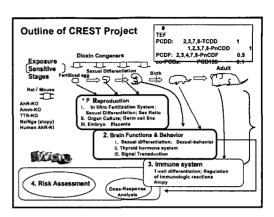


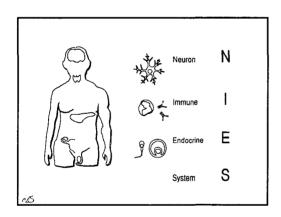
Project Background (TDI Values)

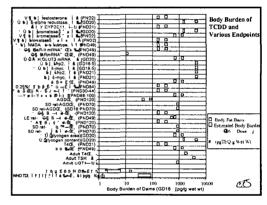
The Current TDI Values on Dioxins in Various Countries: Based upon carcinogenicity and reproductive toxicity (Endometriosis)

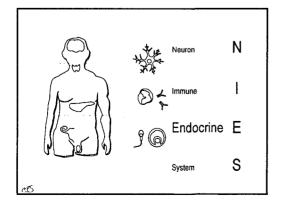
TDI values: 10 pg I-TEQ/kg/day (WHO; 1990)


The Re-evaluation of TDI Value of Dioxins by WHO (1998)
Based upon epidemiological and experimental findings
on endocrine disrupting mechanisms, such as reproductive,
neurobehavioral and immunological toxicity
TDI values 1 - 4 pg TEQ/kg/day

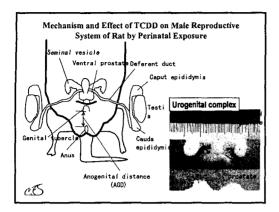


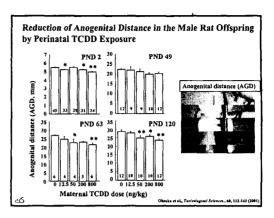

Daily Intake Level of Dioxins in Japan Tolerable Daily Intake Level (TDI) ₱pg TEQ/ kg /day) 4 pg / kg /day Air 6 6 6 6 0.07 Air Soil # 0.0084 Soil Fish and Shellfish 1.41 Meat/Egg 0.31 Daily Milk/Dairy 0.17 pg/kg/d Food Level Colored Vesitables 0.03 Rice 0.001 Others 0.08 co Environment Agency, 1999

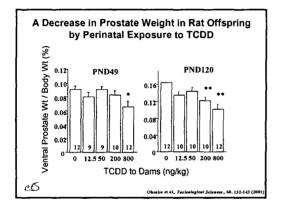

Message from Dioxin Issue


The Current Exposure Level of
Dioxins in the Environment
May Cause Not Only
the Present Human Populations
but also the Future Generations Possibly
by Endocrine Disrupting Mechanisms









Chiharu Tohyama

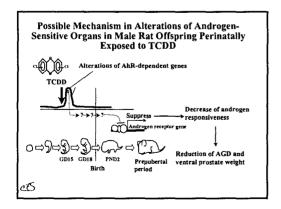
Joint-Expert Committee of Food
Additives and Contaminants (JECFA)

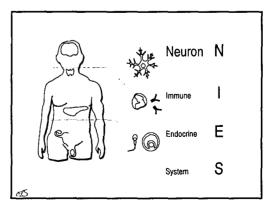
Solution of Policy and Related Compounds (2001)

Solution of Related Compounds (2001)

Solution of Policy and Policy (2001)

Adopted data of Ohsako (1001)

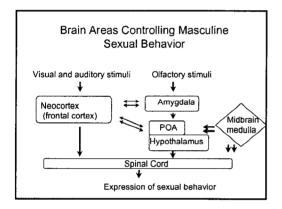

Adopted data of Ohsako (1001)

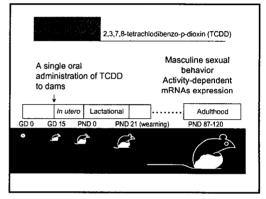

Adopted data of Ohsako (1001)

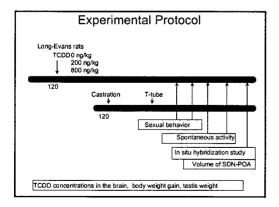
Exposure of TCDD to Pregnant Holzman Rats on GD15 (1001)

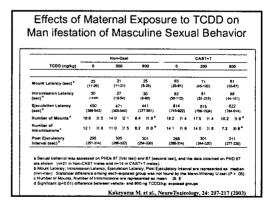
Solution of Policy (1001)

So

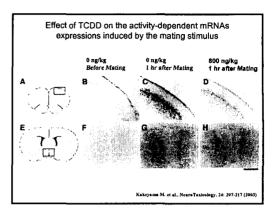





Maternal Exposure to Dioxin Causes
Permanent or Semi-permanent
Dysfunction
in the Frontal Cortex of Offspring
at Behavioral and Molecular Levels


Kakeyama M. et al., NeuroToxicology, 24: 207-217 (2003)

Preceding Studies on Behavioral Effects of Dioxin Dioxins affect performance of learning behavior (Schantz et. al. 1996, Schantz & Bowman 1989, Seo et al. 2000) Effects on the advanced brain function (neocortical axis) Dioxins inhibit masculine sexual behavior (Mably et al. 1992; Bjerke et al. 1994, Gray et al. 1995) Effects of the sexual differentiation of the brain (POA-hypothalamic axis)



Conclusion

The frontal cortex is sensitive to dioxin.

CONCLUSIONS

A perinatal exposure of pregnant rats to a low dose TCDD affected developing offspring with a wide variety of toxicities.

The effects of TCDD were found in development of reproductive organs, such as anogenital distance and prostate, male sexual behavior, brain development, immunologic functions and so on.

The body burden (internal dose) of TCDD that may cause these effects is consistent with the accumulated data used so far to derive the current Tolerable Intake levels.