A Design of Multi-Agent Framework to Develop Negotiation Systems

Hyung Rim Choi*, Hyun Soo Kim" Soon Goo Hong",
Young Jae Park’, Yong Sung Park‘, Moo Hong Kang'

Department of MIS, Dong-A University
840 Hadan-dong, Saha-gu, Busan 604-714, South Korea
Tel: +82-51-200-7477, Fax: +82-51-207-2827

hrchoi@daunet.donga.ac.kr
®hskim@daunet.donga.ac.kr
‘shong@daunet.donga.ac.kr
dyjpark@daunet.‘. donga.ac.kr
ys1126@daunet.donga.ac.kr
‘mongy@daunet.donga.ac.kr

hstract

«+ multi-agent technology has emerged as a new paradigm
f2at can flexibly and promptly cope with various
¢ nvironmental changes and complex problems. Accordingly,
12any researches are being made to establish multi-agent
:ysems in an effort to solve dynamic problems in many
“ields.

-Ic'wever, most previous researches on the multi-agent
‘rameworks aimed at, on behalf of a user, exchanging and
.haring information between agents, reusing agents, and
.upgesting job cooperation in order to integrate and
:si.milate heterogeneous agents. That is to say, their
rammeworks mainly focused on the basic functions of
sezeral multi-agent. Therefore, they are not suitable to the
levelopment of the proper system for a specific field such
S & negotiation.

n an effort to solve this problem, this research has tried to
lesign a multi-agent framework-base negotiation system, so
ha: for the sake of a user it can evaluate the negotiation
nzssages, manage the negotiation messages, and quickly
iz exactly exchange messages between negotiation agents.

“irst of all, we have made research on the basic functions
hat are necessary in the development of a mnegotiation
iystem, and then have analyzed the limitations of existing
nulti-agent frameworks when trying to apply them to a
1egotiation system. After these efforts, this study suggests a
esign of multi-agent framework to develop a negotiation
1ystem.

Kuywords: Negotiation; Multi-Agent Framework
L. Introduction

IM2 rapid spread of computers and Internet are quickly
-ezlacing existing offline transactions with online
T21sactions not only quantitatively but also qualitatively.
Jowever, most online transactions are being made on the
sasis of a price factor. That is, online transactions are
mainly composed of auction or transactions of a fixed price.

35

Therefore, the negotiation trade of the products that have
multiple attributes besides a price is difficult to be done on
an online basis.

The negotiation trade usually has multiple attributes to be
considered, and also negotiation messages can be easily
changed according to the inclination of counterparts.
Because of this, the development of negotiation system to
support negotiation trade on an online basis has caused
much difficulty.

Nevertheless, the necessity of negotiation is well shown in
the research of Media Laboratory of MIT [2]. According to
the CBB Model (Consumer Buying Behavior Model) of the
e-commerce revealed in this research, a buyer underwent
six stages before buying goods: (1) the identification of the
need, (2) the product brokering, (3) the merchant brokering,
(4) the negotiation, (5) the purchase and delivery, (6) the
service evaluation.

Accordingly, in order to support the negotiation, multiple
attributes of a negotiation should be considered and also the
inclination of trade counterpart has to be analyzed.
Therefore, the agent system that can support a negotiation
should be able to perform these functions.

An agent means a computer program that can do something
on behalf of someone else. To go into details, an agent
reasons based on the perception from environment and
knowledge from inside, and then acts, and then affects
environment, and continues to communicate with other
agents including a user. That is, an agent is a factor of
software doing all these functions [1].

The multi-agent technology to quickly and flexibly cope
with the interaction of agents, diverse environmental
changes and complicated problems is emerging as a new
paradigm. In many fields the development of multi-agent
system is in progress, and also many multi-agent
frameworks are being suggested to provide the environment
facilitating the development of a multi-agent system.

These multi-agent frameworks provide a developer with
API (Application Programming Interface) so that the
developer may develop and contro) the agents within the
multi-agent system, and also continue to solve problems

through feedback to the developer.

However, these frameworks are supporting only the general
function of managing and communicating with agents, and
not supporting the specific function of a certain field like a
negotiation system. The negotiation system needs an
additional function considering the many attributes of a
negotiation. However, until now existing multi-agent
frameworks have not provided the function to support a
negotiation. Therefore, this paper has analyzed the
attributes of a negotiation and then designed the multi-agent
framework to facilitate the development of a negotiation
system.

The second chapter of this paper has analyzed the attributes
of a negotiation and studied the functions of a negotiation
system. The third chapter has checked whether existing
multi-agent frameworks could be able to support these
functions. The fourth chapter, based on existing multi-agent
frameworks, has designed an MAFNS (Multi-Agent
Framework for Negotiation System) that can support
negotiations. Finally, the fifth chapter has mentioned the
contribution of this paper and further researches to be
made.

2. Negotiation System

A negotiation is a way of making a decision in an effort to
reach a common purpose between participants [2]. In the
object management group, economics, and in particular
game theory, this interaction between participants is called
in the terms of “protocol” or “strategy” [3]. Protocol is a
rule of game, and means trade mechanism such as auction,
reverse auction and bidding. Strategy refers to the
participants’ behavior to maximize their effectiveness.

In summary, a negotiation means the interaction among
participants, who have to make a decision within the rule of
certain game, to maximize their effectiveness. The diverse
trade models that are used online can be explained as
negotiation patterns.

Until now, a lot of researches have been made to support
diverse negotiations through a system. And these studies
can be divided into two groups.

The first research group ultimately aims at complete
automation of a negotiation. The automated negotiation
here means that single computer or connected computers
are to perform the function of negotiation without the
intervention of human beings. In reality, the face-to-face
negotiations are very complicated. However, the automated
negotiation agents in the existing researches haven’t
included complicated processes needed in the face-to-face
negotiations [4].

Maes has emphasized that as one of the features of
connected intelligent agents, each agent seems to be simple,
but overall environments of agents are quite complicated,
while acting intelligently [5]. “Kasbah” [6] gives a good
example of an automated negotiation agent, although it is
not an agent connected to network.

Kasbah is a center-oriented e-marketplace to support
buying and selling goods through intelligent agent. This has
an automated negotiation agent with a single attribute that
buyers use the price markup strategy and sellers adopt the

price cut strategy.

Meanwhile, some scholars have used a machine learning
for an automated negotiation. Oliver J. R. has introduced a
machine learning using genetic algorithm in an effort to
teach agents an effective way of negotiating [7].

The second research group focuses on the Negotiation
Support System (NSS) supporting the negotiation process
instead of automation. The NSS provides information
needed for making a decision during the negotiation or
provides diverse conversation channels electronically.
Different from an automated negotiation agent, NSS
depends on a human being when it inputs limited conditions,
sets problems initially and makes final decisions.

There are some features of a negotiation to be considered
for the development of negotiation system. Paula et al.
pointed out that the negotiations taking place at the real
world have the following features [8].

Table 1 - Attributes of Negotiation and Functions of

36

Negotiation System
Attributes Explanation Functions of
Negotiation
System
Multiple Most negotiations in the real Divide the
Attributes world contain multiple negotiation items
Negotiation attributes. For example, they through parsing the
contain the matters of price, messages of KQML
delivery date, quality or XML.
requirements, tax, etc.
Similar Buyers sometimes cannot Definition of product
Product select the exact product, and category
; so they point out the product

Suggestion class. In this case, sellers (or
suppliers) usually recommend
a similar product or an
alternative product.

Related When a buyer purchases a Definition of
Product specific product, the seller can | discount and

Suggestion recommend related products. compleme.ntary
(for example, some products | relationship between
are discounted or products
complemented when other
products are bought together.

Ultimatum A negotiation participant can Provide the type of
tell the counterpart that the negotiation message
current suggestion is a final (start, count, and
one. A final suggestion means | finish)
that if it is rejected, the
negotiation will discontinue.

Negotiation If a buyer gives up the current | This is not a matter

Cost transaction and tries to seek a | of function.
new partner, it will cause
additional costs for searching.
Therefore, to save additional
costs, he can buy the current
product.

Learning The experiences in the past Management and

negotiations will be reflected analysis of
in the coming negotiations. negotiation messages

As shown in the table 1, a negotiation has 6 attributes, and
accordingly a negotiation system should be able to support
these attributes. However, existing multi-agent frameworks
don’t cover all these attributes. Therefore, the functions that
don’t be supported by the existing multi-agent frameworks
can be realized by task agent. Otherwise, a new system or
components should be developed. That is to say, if a

sveloper tries to use existing multi-agent frameworks, he
128 to realize additional functions for negotiation system.

3. Existing Multi-Agent Frameworks

The frameworks to develop multi-agent systems have many
kinds: JAFMASS (A Java-based Agent Framework for
M ulti-Agent Systems), JADE (Java Agent Development
Framework), FIPA-OS, DECAF, and Agent Tool. This
paper is based on the multi-agent framework of FIPA, and
tzen has analyzed both JAFMAS and FIPA-OS Agent
I atform.

Taese two multi-agent frameworks provide the function
t:at can realize and manage inside agents so that it can
ficilitate the development of multi-agent systems.
I oreover, a lot of researches are actively in progress based
¢n these two frameworks. Because of this, this paper has
stlected these two multi-agent frameworks for comparison.

11 JAFMAS

AFMAS developed at the University of Cincinnati uses a
.zva language, and provides class set to realize the agents.
A total of 16 Java classes support the realization of its
svstem function. The development of JAFMAS has five
stages. JAFMAS provides the following functions.

Table 2 - Analysis of JAFMAS Function

FIPA has a basic unit of AP (Agent Platform). In order to
perform a cooperative job with other agents in the same
platform or other platform, each agent has to be registered
at least in one platform. AP provides the service for a
cooperative job to the agents belonging to a platform.

AP contains many components, and many APs themselves
also become the components of a larger system. ACC
(Agent Communication Channel) supports the message
transmission between agents inside AP, and also supports
the communication between APs. ANS (Agent Name
Server) provides each agent with the information on the
name and address of other agents. DF (Directory
Facilitator) provides each agent with the information on the
services and capability of the agents inside the AP.

AMS (Agent Management System) manages the life cycle”
of agents inside AP including the registration, deletion,
temporary suspension, and revival of each agent. The agent
outside AP is a basic performer of separate domain. That is,
it is sort of an applied agent concept.

FIPA-OS consists of such components as DF, AMS and
MTS (Message Transport System). DF provides other
agents with yellow page containing the newly generated
information of other agents. AMS monitors the life cycle of
agents, and helps other agents perform well. MTS
facilitates the message exchange between agents. FIPA-OS
provides the following detailed functions.

Table 3 - Analysis of FIPA-OS Agent Platform Function

Function Detailed Function Explanation Function Explanation
() >mmunication Communication Support communications Task Manager Perform the tasks generated inside the
Protocol Layer between agents or groups. agents, and send and receive
Linguistic Layer Support the composition of messages.
Sommumcanon codmmum;:‘gnon messages Conversation Manager | Trace the message situation between
nguage) and searching. agents, and support the contents
Social Model Gathering Required | Gather the information on management.
Resources the agents’ attributes inside MTS Enable the messages between agents
the system. (Message Transport | to be sent and received through
Conversations Support the conversations System) dlvte)rse pr(;ltocol (RMI, SSL-RMI,
between agents by the corbaname, ttp) -
messages generated in the JESS Agent Shell Shell function enabling FIPA-OS
linguistic layer. based agent system to use JESS
Conversation Rules | Set the communication rule Database Factory Provide a simple mechanism helping
of agents. connection to other database
Agent Agent This has such attributes as Abstract Databinding Support the composition of special
agent name, host name, and Implementation type of message.
server port. Th‘? 13 als‘iha (Support XML, Java Properties,
component or M Abstract Script Binding through
development of agent Dat ing Fact
application. atamapping Factory)
Cperator Interface | Creating Agents Have a list of agents’ class,
(CreateAgent Class) | attribute, and subscribe, and
l?’;t";‘fgze them through 3.3 Limitations to Development of Negotiation System
ﬁ%::f;w Operator :::V'deage’fnf:fo"zm;ug; The multi-agent frameworks mentioned above have such
including machine name simple ﬁlnctiQns as the generation of agent, and supporting
and port number through the conversation between agents and management of agents.
i interface. _ Therefore, they don’t have the function to support
Conversation Provide the communication negotiation attributes as shown in the table 4.
Operator Interface messages between agents As sh in th ble 4 L. 1ti
through interface. s shown in t. e table 4, existing multi-agent framfaworl.(s
have no function to define the category and relationship

3.2 FIPA Agent Platform

_37 -

between products. However, these functions are absolutely
necessary as an alternative method to be suggested, if the
conditions of a negotiation don’t coincide. Also, the

inclination of the negotiation counterpart should be
analyzed; negotiation messages should be prepared, and be
used to bring a better result of the negotiation. In an effort
to develop these functions for a negotiation system, this
paper suggests a new multi-agent framework.

Table 4 - Negotiation Support Function of Existing

Frameworks
Attributes Existing Framework’s JAFMAS FIPA-OS
Negotiation Support Agent
Function Platform
Multiple As KQML supports the | Linguistic MTS

Attributes | messages with multiple | Layer

Negotiation | attributes, they have a
support function.

Similar There is no function to | Function Function
Product define the category between | required required

Suggestion | products having different
attributes.

Correlationa | There is no function to | Function Function

1 Product define the correlation | required required

Suggestion | between products having
different attributes.

Ultimatum | Provide the same message | Conversation | Conversati
type through | s on
communication layer. manager

Negotiation | This is not a matter of

Cost function

Learning There is no function to | Function Function
manage and analyze | required required
negotiation messages.

4. Multi-Agent Framework for Negotiation
System (MAFNS)

4.1 Outline of MAFNS

First of all, MAFNS is based on both the AP structure of
FIPA, which has been adopted as an international standard,
and JAFMAS adopting the FIPA standard. However,
MAFNS has solved and complemented the problems of
existing multi-agent frameworks in the development of a
negotiation system.

The existing multi-agent frameworks have revealed the
following problems. When AMS judges whether a task
agent has performed its task or not, AMS depends on DF
(Directory Facilitator) that contains a task agent. However,
in this case, the task agent that prepares negotiation
messages doesn’t consider the price and inclination of the
counterpart agent. Therefore, the optimum result of a
negotiation cannot be expected.

For example, suppose agent 1 (buyer) enters into
negotiations with agent 2(seller). Generally, negotiations
have three stages — searching stage, negotiating stage, and
follow-up stage. Accordingly, the negotiation agent has
three task agents: search-counterpart-task, send-negotiation-
message-task, and confirm-negotiation-task.

According to their attributes stored in the DF,
search-counter-task will search for its counterpart agent,
send-negotiation-message-task will prepare messages and
transmit them, and confirm-negotiation-task will finalize
the negotiation, sent its result to the counterpart agent, and
also show it to the user of the agent. However, the attributes

38

of the task agents alone stored in the DF cannot bring the
better result of negotiations. For the solution of this
problem, MAFNS provides the following functions.

First, the search-counterpart-task agent doesn’t consider the
expected price of the counterpart agent, and depends on the
parameter registered in the DF. Because of this, the
negotiations are likely to fail. But MAFNS analyzes the
price of the previous negotiation, and considers the price
that the counterpart agent wants. Accordingly, the
negotiation will have a high possibility of success.

Second, the send-negotiation-message-task agent will bring
the scope of negotiation items from DF, and then prepare
messages based on this information. However, this message
will be prepared without considering the trade inclination of
the counterpart agent. As a result, the negotiation will fail.
But MAFNS will first analyze the former contents of the
negotiation, and then forecast the price that the counterpart
agent wishes. And according to this consideration, it
prepares its message.

Finally, the confirm-negotiation-task agent sends the results
to the counterpart agent and the user when the negotiation
has ended. At this time, MAFNS will keep the results of the
negotiation in a certain DB and use them in the next
negotiation. Moreover, to suggest a similar product or a
related product needed for a successful negotiation,
MAFNS provides the function to define the category and
relationship of the negotiation items. By using this function,
MAFNS will be able to increase the possibility of
negotiations.

4.2 Structure of MAFNS
4.2.1 Components

The major components of the multi-agent framework based
on MAFNS are as follows:

AMS (Agent Management System): manages the life
cycle of agents such as the operation and suspension of
agents inside the system.,

ANS (Agent Name Server): ANS stores the information
of the names and addresses of all task agents inside the
system, and perform the role of mapping the logical
names of task agents to the related data for real
communications.

DF (Directory Facilitator): DF plays the role of a
“yellow page,” and stores and provides the information
of task agents.

Agent Implementation: This realizes an interface agent
and a task agent. The interface agent provides the
interface between a user and a system, and the task
agent performs the job that a user wants and a common
framework is provided as a super-class.

NS (Negotiation Supporter): as a principal component
of the negotiation system, NS stores the messages of the
negotiation, and also provides searching and inclination
analysis by task agent. This also contains the
information on the products and product category, and
then helps defining product’s relationship.

""hese components are based on Java language class
-:ackage, and its conceptual structure is shown in the below
Tgare 1.

figent 1 {(Buver)
‘Agent implementation

DF |ANS | NS
AM S

Figure 1 - Conceptual Structure of MAFNS
v 2 NS (Negotiation Supporter)

.A8 a component to support agent implementation, NS has
‘hree functions: the function to manage the details of
rzvious negotiations, the function to manage the results of
urrent negotiations, and the function to define the products
. product category.

\'l the negotiation details and results are to be registered in
:etain DB inside the agent to be used for the next
wegotiation. And these data will be used to analyze how
much the negotiation items and prices of the trade
:cLnterpart agent have changed. In addition, NS provides
hz information on similar products and related products to
n:rease the possibility of negotiation success.

A: shown in the figure 2, the structure of NS has three
slasses: the negotiation-details-manager class that deals
vith negotiation details, the negotiation-result-manager
:lass that manages negotiation results, and the
srzduct-manager class that supports the information on
srzducts and product category.

.3 Design of MAFNS

A5 mentioned above, the classes composing the agent
system are divided into two classes, that is, the basic class
n charge of the realization of agents and ACC class in
sharge of communications between agents. These classes
irz based on Java class, and the role of support methods is
1s ‘ollows.

1.3.1 AgentConnection Class

ApentConnection class performs the things to be done for
‘hz comnection between agents. The connection will be
ic:re through such information as 1P, port, and agent name.
This also checks the state of connection between agents,
and when the job ends, it cuts the connection.

_39\

NS (Negotiation Supporter) ProductManager

Int{] pdagonyt

il o
NegatigtionResultManager | [NegotiationDetailsSManager | | ufi(ssio ue. mistinsasis
Sring [aroduol name

Sring [] pradusival

Sriog [] aroduel sdegacyt
Slring[) produslsaogor2
Sting [] praduet.alaiianghis
ring [} produst mslinn_typa

Int[] details_val
Int details.change_va
String agent_name

Int result _val
int result_change_val
String agent.name

ini0 Ja(Bdring neg a.0a)
:iCabgaryi(Siing nege_no,

it satagoryl_uo,

Shiing vakign y1-nama}
iCatagory2(Sting regn_no,

inl sateporylna, int oalagonr2_na,

Hring vakgo y2.nama)
saiCategoryt Rakiisnship

(S4ring nego_no, inl vategeryl_tfiad,

ini vatagoryi_aasand. inl ypa)

setDetails(String cpan,
Date nego_date)
getDetails(String cpan,
Date nego.date_from,
Date end_date_to) Date nego_date_to)}
getCounterPantWishResult || getCounterPartNextValue
(String cpan) (String cpan, o oxaoryisorans.
; o biisnshi
int nOW-CDaﬂ_Val) n(&:m“:.’ygn.nn. i .i:.guyl_ﬁld.
4 iaf oalagary_sesand, int Yaa)
soiPradupifaiationahip
{ {54ring naga_no,

Siring produsiname.,
Result DB

setResult(String cpan,
Date end_date)

getResult(String cpan,
Date end_date_from,

Siring prsduvi_eame 2, inl trpdd
y 201Ps0duoi(Sring pego. o,
Sidng pradusinama,
Bdng pradupival, isl sakags w1,
il satgaryd)
9of0tharCategn i 1 (SAring nago_nu,
il satagoryl)
9eOiharCatego y2($iring negane.
it sakigaryl, inf sateguryd)
golExiaCalagnry! (Mring nega.na,
il satagaryl)
oefExinCaleanry2 Bdring neon_na,
i sagonyt, inf eatagnry2)
geiCalegury2Ralatinnahis
($ring nagu_qs, inl satagoryZ_first,
il valegory2aacoad, inl ¥ypa)
9a0IharPm dupi{BAting neg s-na,
Sting areduol_rama
goilExiaPmduoi(G¥ing nago_na,
Hring pradusi_nama)

st}
Product 0B

Figure 2 - Structure of Negotiation Supporter

Details DB

* setAgentConnection(Address ip_adress, int port no) :
receive the ip_address and port_no of the counterpart
agent, and then try to connect to a specific agent.

* getAgentConnection(String agent name) : when
setAgentConnection() succeeds in connection, the name
of the counterpart agent (agent_name) will be given and
connected.

* isAvailable(String agent_name) : confirm whether it is
connected to the counterpart agent or not. If it is not
connected, it should perform closeAgentConnection() to
cut the connection to the counterpart agent.

* closeAgentConnection(String agent name) : cut the
connection to the counterpart agent (agent_name).

4.3.2 Conversation class

Conversation class supports the message exchange between
connected agents. By using the information from the
connected counterpart agent at the AgentConnection class,
this can send and manage the real messages.

* getSocket(String agent name, int port no) : allot a
socket to the connecting agent (agent_name).

* closeSocket(String agent name) : the socket allotted to
the connected agent (agent_name) will be removed.

* getMessage() : store the messages from the counterpart
agent.

* sendMessage(String send message) : send to the
counterpart agent the message generated in the
Messages class.

4.3.3 Messages class

This performs the function to generate and manage the
messages for communication between agents. When

generating messages, this provides KQML or XML-base
messages.

setMessageHeader(String sender, String receiver, String
reply_with, String ontology, String language type) : set
the header part for message transmission.
addMessageBuffer(String param_name, String
param_val) : add the contents of message by parameter.
getMessageString(String xml_or_kqml) generate
messages on XML or KQML-base type.
parseMessage(String received message) : parse the
messages, and store the header part and contents part by
parameter.

getParamVal(String param_name) : return the parameter
prices of transmitted message.

4.3.4 NegotiationSupport classes

This helps a task agent support negotiations. This is
composed of three classes: the class to manage negotiation
details, the class to manage negotiation results, and the
class to deal with the information on products and product
category.

NegotiationResultManager class

setResult(String cpan, Date end_date) : store the results
of the negotiation with the counterpart agent (cpan :
Counterpart Agent Name).

getResult(String cpan, Date end date from, Data
end date to) : return in rows the results of the
negotiation with the counterpart agent that was held
during a specific period.
getCounterPartWishResult(String cpan) : analyze the
results of the negotiation, and return the expected price
that the counterpart agent wishes.

NegotiationDetailsManager

setDetails(String cpan, Date nego_date) : stores the
contents of trade with the counterparts agent.
getDetails(String cpan, Date nego_date_from, Date
nego_date to) : return in rows the details of the
negotiation with the counterpart agent during a specific
period.

getCounterPartNextValue(String cpan, int
now_cpan_val) : return the expected suggestion price of
the counterpart agent in response to the present price
(now_cpan val).

ProductManager

initData(String nego_no) : bring the information on the
products and product category stored in the DB by
negotiation.

setCategory1(String nego_no, int categoryl no, String
categoryl name) : store the information of the first
category by negotiation.

setCategory2(String nego no, int categoryl no, int
category2 no, String category2 name) store the

40

information of the second category.

¢ setCategorylRelationship(String nego no, int
categoryl _first, int categoryl_second, int type) : store
the relationship between first categories.

* setCategory2Relationship(String nego_no, int
category2_first, int category2_second, int type) : store
the relationship between second categories.

* setProductRelationship(String nego_no, String

product name 1, String product name 2, int type) :
store the relationship between products.

* setProduct(String nego_no, String product_name, String
product_val, int categoryl, int category2) : store the
information on products.

* getOtherCategoryl(String nego_no, int categoryl) :
return the alternative category of the specific category.
(First category)

* getOtherCategory2(String nego no, int categoryl, int
category?) : return the alternative category of the
specific category. (Second category)

* getExtraCategoryl(String nego_no, int categoryl) :
return the category related to the specific category.
(First category)

* getExtraCategory2(String nego no, int categoryl, int
category2) : return the category related to the specific
category. (Second category)

* getCategory2Relationship(String nego_no, int
category2 first, int category2 second, int type) : return
the relationship between second categories.

¢ getOtherProduct(String nego_no, String
product_name) : return the alternative product to the
specific product.

» getExtraProduct(String nego_no, String
product_name) : return the product related to the
specific product.

The flow of functions suggested above is shown in the

below figure 3.
AgentConnection Corversation
SsarAgentConnection() N
et i -
:ncs'Avagablc%) ,:L‘:L‘iz‘;‘;‘:g | __ProductManager |
oseAgentConnection() ®sendMassage() “itatag
’I\ setCategoryl()
SsatCategory2)
Negotali Messages SetCategory! Relationship(),
— $cetCategory2Relationship()
WseiResul SgetMessageHeader) SotProductRelationship()
’;R”ul'o |— — %addMessageBufter) [<— — — —{ ®setProduct()
o 'tc“‘“o & Stringf Sge10therCategory ()
98! o SparseMessage) $getOtherCategory2()
g 10 $getExtraCategory 1)
7y SgotExtraCategory20)
| SgetCat y i i
NegotiationDstailsManager $gatOtherProduct}
$getExtraProduct()
@seiDeiails)
SgetDetails)
$getCounterPartNextValue()

s
Figure 3 - MAFNS Class Structure

First, try to connect to the counterpart agent through
AgentConnection, and then if the connection succeeds, the
negotiation starts through conversation. The negotiation
messages to be used at this time are prepared by Messages.
And these messages are well managed by the classes of NS.
That is, the NS classes analyze the inclination of the
counterpart agent, and define the attributes of products and

s;raduct category to seek the better result of negotiations.

3. Conclusion

3:.sting multi-agent frameworks mainly focused on the
senieration of agent, the conversation between agents, and
h: management of agents. That is to say, they have
srovided general functions for the development of a
n:lti-agent system. Therefore, they have many limitations
0 the development of a specific system like a negotiation
system.

3cecause of this, this paper has tried to suggest a new
7:lti-agent framework to develop a negotiation system
hrough NS (Negotiation Supporter). NS performs the
finctions to suggest similar or related products, and also
aralyze the trade inclination of the counterpart agent,
scnsidering the attributes of negotiation.

A:cordingly, this research has not only laid a foundation of
t: development of the multi-agent framework for
a¢ zotiation system, but also will stimulate the development
. the multi-agent framework for other specific fields. From
aow on, more researches to develop the multi-agent
frameworks to be applied to various fields are expected to
b made actively.

seferences

.. Stuart, R., and Peter N. (1995). Artificial Intelligence.: A
Modern Approach. Prentice Hall.

% Rosenschein, J., and Zlotkin, G. (1994). Rules of
Encounter: Designing Conventions for Automated
Negotiation among Computers. MIT Press.

[Z] Guttman, R. H., and Maes, P. (1998). “Agent-mediated
integrative negotiation for retail electronic commerce,”
In P. Noriega and C. Sierra, editors, Agent Mediated
Electronic Commerce, 1571, Lecture Notes in Artificial
Intelligence, pp. 70-90.

[«] Beam, C., and Segev, A. (1997). "Automated

Negotiations: A Survey of the State of the Art," CMIT

Working Paper 97-WP-1022.

[5] Sandholm, T. W,, and Lesser, V. R. (1995). “Equilibrium
analysis of the possibilities of unenforced exchange in
multiagent systems,” Mellish, C. S. (ed.), Proceedings
of the Fourteenth International Joint Conference on
Artificial Intelligence, 20-25, pp. 694-703.

[5] Chavez, A., and P. Maes. (1996). “Kasbah: an agent
marketplace for buying and selling goods,” Proceedings
of the Ist International Conference on the Practical
Application of Intelligent Agents and Multi-Agent
Technology, pp. 75-90.

(7] J. R. Oliver. (1996). "A Machine Learning Approach to
Automated Negotiation and Prospects for Electronic

41

Commerce," Journal of Management Information
Systems, 13(10), pp. 83-112.

[8] Paula, E. G..,, Ramos, F. S., and Ramalho, G. L. (2001).
"Bilateral Negotiation Model for Agent-Mediated
Electronic Commerce," Agent-Mediated Electronic
Commerce [1I, Springer-Verlag, pp. 1-14.

[9] Labrou, Y., and Finin, T. (1997). “A Proposal for a New
KQML Specification,” Technical Report, TR-CS-97-03,
CSEE, Univ. of Maryland Baltimore County.

{101 FIPA(1997). FIPA '97 Draft Specification, http://drogo.
cselt.stet.it/fipa/

[11] Chauhan, D., and Baker, B.(1997). JAFMAS Software
Architecture, http://www.ececs.uc.edu/~abaker/JAFM
AS

[12] Kang, G. Y., Jang, J. H, and Choi, J. M. (1998).
“Java-based Multi-Agent Framework,” Cognition
science Society s papers, 9(2), pp 25-36.

