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Abstract

In [5], the bit security of keys obtained from protocols based on pairings has been
discussed. However it was not able to give bit security of tripartite authenticated
key(TAK) agreement protocol of type 4 . This paper shows the bit security of keys

obtained from TAK-4 protocol.

I . Introduction

The Weil and Tate pairings are popular new
notions in cryptography and have found many

applications. In particular, the pairings have
been used for identity based key exchange
protocols.

In [5], it was remained an open problem to
understand the bit security of keys obtained
from the protocol TAK-4 of Al-Riyami and
Paterson [1]. In this paper, we show the bit
security of keys obtained from the protocol
TAK-4.

The remainder of the paper is organized as
follows. Section 2 briefly explains the
cryptographic bilinear map and mathematical
definitions. Section 3 discusses bit security of
keys obtained from TAK-4. Finally Section 4
concludes the paper.

I . Previous Works

1. Definitions

We denote by

Tr(z) = z+z2++2""", N(z) = 227°7*"°

the trace and norm of z€F» to F, (see Section
2.3 of [8]).
For an integer %, we define
| x|, =min|x—ap|, acZ
and for a given k > 0, we define by MSBy, »(x)
any integer u, 0<u<p-1, such that

I x—ul, < p/2

Roughly speaking, a value of MSB ,(x) gives

the k most significant bits of the residue of x
modulo p. Note that in the above definition k
need not be an integer.

Let Wy, -, W, be a fixed basis of F,» to F,
and let #,, ---, #, be the dual basis, that is
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. _J0, iz j
et = { 3 {52

see Section 2.3 of [8]. Then any element 0 &
F,» can be represented in the basis Wi, '+, W,
as

m

0= Tr(#,0)w;.

i=1
The “hidden number problem with trace over
a subgroup <& F:m" can be formulated as
Fe,
chosen independently some k > 0, recover the
number 0 €F,~. The case of m = 1 and TSF).

corresponds to the hidden number
introduced in {3].

follows: Given r elements t;, ***, t, € T &

problem

The following statements are partial cases of
Theorem 2 of [7]. We denote by (¢ the set of z
€F,~ with norm equal to q.

Thus | (¢! = (" ~1)/(p-1).

Lemma 2.1 [5]. Let p be a sufficiently large
prime number and let < be a subgroup of (¢ of
order [ with | = p"7'R*H

3$>0. Then for

for some fixed

k = [2D%gp | and r = [ 4(m+1)Piogp |

there is a deterministic polynomial time
algorithm A as follows. For any O€F,~ if t,,
**, t. are chosen uniformly and independently
at random from < and if w, = MSB,,(Tr{0¢,))

for i = 1, -=*, r, the output of A on the 2r
values (u;, t;) satisfies

PriAlt, =, t 5 u, ", u)=0] = 1-p

Lemma 2.2 [5]. Let p be a sufficiently large
prime number and let € be a subgroup of F:‘m

of order of ! with [ = p! for some fixed 3 > 0.
Then for any 2 > 0, let

k = [(1-4/m+?)logp] and r = [4m/? ]

there is a deterministic polynomial time
algorithm A as follows. For any 0&F,~ if t,

*, t. are chosen uniformly and independently

at random from < and if v = MSB:,(Tr(0t;))
for 1 = 1, -, r, the output of A on the 2r
values (t;, u;) satisfies

-1

Pr[A(t1,“‘,t, ;U1,"',Ur) =U] = I‘D

2. Pairings

We use the same notation as in [4]. We let
G, be an additive group of prime order g and
G, be a multiplicative group of the same order
q. We assume the existence of an efficiently
computable bilinear map é from GxXG, to G,.
Typically, G; will be a subgroup of the
multiplicative group of a related finite field and
the map é will be derived from either the Weil
or Tate pairing on the elliptic curve.

We also assume that an element PEG,

satisfying é(P, P)#1g, is known. When a€Z,
we write aP for P added to itself “a” times,
also called scalar multiplication of P by “a”. As
a consequence of bilinearity, we have that, for

a, b€Z,;

é(aP, bP) = é(P, P)*® = é(abP, P)

a fact that will be used repeatedly in the sequel
without comment. We simply assume in what

follows that suitable group G;, a map é and an
element PEG, have been chosen, and that

elements of G; can be represented by bit

strings of the appropriate lengths. We note that
the computations that need to be out by entities
in our protocols will always involve pairing
computations, and that the complexity of these
will generally dominate any other calculations.
However, with recent advances in efficient
implementation of pairings [2], the complexity of
a pairing computation is now of a similar order
to that of elliptic curve point multiplication.

We now assume that there is an algorithm

which can provide some information about one
Pal

of the components Tr(#e(P, P)*) of above
representation and show that it leads to an
efficient algorithm to compute the whole value
E(P, P)™ hence the key Tr(é(P, P™). It
follows that the partial information about one of
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the components is as hard as the whole key.

To make this precise, for every k > 0, we
denote by O, the oracle which, for some fixed

#€F,. and any a, b, ¢ €{0, -, [-1}, takes as
input the pairs

(P, P), (aP, aP), (bP, bP), (cP, cP),
and outputs MSBk,p(TT(#;é (P, P)*)).

3. Tripartite Authenticated
Key(TAK) Agreement Protocol

In [6], the advantage of Joux's tripartite
protocol over any previous tripartite key
agreement protocol is that a session key can be
established in just one round. But this key is
not authenticated and this allows a
man-in-the-middle attack. In {1], in order to
provide session key authentication, some form of
authenticated long term private/public key pair
are needed. As with the other protocols, a
certification authority(CA) is used in the initial
set-up stage to provide certificates which bind
user’s identities to long term keys.

statements are TAK key
generation. As usual, in the protocol below,
short-term keys a, b, c€& F;k are selected
uniformly at random by AB and C respectively.
An entity A broadcasting to B and C, sends his
fresh short-term public value aP along with a
certificate Cert, containing his long-term public

The following

key. Corresponding values and certificates are
broadcast by B and C to A, C and A, B
respectively. Notice that the protocol messages
authenticity of the two certificates he receives.
If any check fails, the protocol should be
aborted. When no check fails, one of four
possible session keys described below should be
computed. Below, H denotes a suitable hash
function.

1) Type 1 (TAK-1)
The keys computed by the entities are:

K. = H(E(bP, cP) Il €(yP, zP)"),

Ks = H(é(aP, cP)’ Il é(xP, ZP)"),

Kc = H(é(aP, bP)° Il 6(xP, yP)).

By hi-linearity, all parties now share the
session key Kasc=H(E(P, P)™ Il 6(P, P)*").

2) Type 2 (TAK-2)

The keys computed by the entities are:

Ka = 6(bP, zPY - é(yP, cP)® - 6(bP, cP)",
Ks = é(aP, zP)’ - 6(xP, cP)’ - é(aP, cPY,
Kc = 6(@aP, yP)° - 6(xP, bP) - é(aP, bPY.

Kagc = 6(P, P))e (el ook
3) Type 3 (TAK-3)
The keys computed by the entities are:
Ka
Ks

&(yP, cP)* - 6(bP, ZP)* - 6(yP, zP)",

é(aP, zP) - 6(xP, cPY - é(xP, zP)",

K¢ = €(aP, yP)* - 6(xP, bP)" - é(xP, yP)".
KABC - e"(P P)(xy)c+(xz)b+(yz)a
4) Type 4 (TAK-4)

The keys computed by the entities are:

K. = 6(bP + H(bP Il yP)yP,

a+H(aP | xP)x

cP + H(cP Il zP)zP) ,

Ks = é(aP + H(aP Il xP)xP,
cP + H(cP || ZP)zP)**HeF 1 #)
Kc = é(aP + H(aP Il xP)xP,

c+H(cP I 2P)2

bP + H(bP Il yP)yP)

The session key is Kasc =
e"(P P)(B+H(3PH xP )b+ H(BP L yP)y)(c+H{cPl zP)z)
For simplicity, we set Ha*=H(aP Il xP), Hg*=

H(bP § yP), Hc=H(cP !l zP). Then the session
key is

Kasc = e"(P P)(a+HAx)(b+H,y)(c+ch)
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M. Bit Security of keys otained
from the protocol TAK-4

In [5], it was remained as an open problem
to understand the bit security of keys obtained

from the protocol TAK-4 of Al-Riyami and
Paterson [1].
We have already described the tripartite

Diffie-Hellman system of Joux. In that case, an
adversary sees (P, P), (aP, aP), (bP, bP) and
(cP, cP) and the key 1is derived from
Tr(e(P, PY*)€{0, 1, -, p-1). In this section,
we discuss the bit security of keys obtained
from the protocol version 4 of Al-Riyami and
Paterson [1].

Theorem 3.1 Assume that p is an n-bit
prime (for sufficiently large n) and ! is the
order of group G; such that ged(/, p(p-1)) = 1

and | = p'?"! for some fixed 4 > 0. Then,
there exists a polynomial time algorithm which,
given the pairs

(P, P), (aP, aP), (bP, bP), (cP, cP)
for some a, b, ¢ € {0, -+, -1}, makes O(n'?)
[2n'/2] and

computes é P, o correctly with probability at

calls of the oracle O, with k =

least 1-p~ .

Proof. In general case, choose a random
re{0, --+, [~1} and call the oracle Q. on the
pairs

(P, P), ((a+HAx)P, (3+HA X)P), ((b+H5y)P,
(b+Hpy)P), (((c+Hcz) +1)P, ((c+Hez) +r)P)

(the point ({c+H¢z) +1r)P can be computed from
the values of (c+H¢z)P and r.)

Let O - #é(P, P)(a+H,x)(b+H5y)(c+ch) be
hidden number and let t = €(P, )/ *He )b+ Hor)r

which can be computed as t = é\((a+HAx)P,

(b+Hsy)P)’ . The oracle returns
MSka(Tr(#é(P, P)(a-rH‘x Ho+Hey){c+Hez )} +r) ))
= MSBy o (Tr(#t)).

Since [ is prime and ab = O(mod 1) it
follows that the “multipliers” t are uniformly
and independently distributed in G,<F,~, when

the shifts k are chosen uniformly and
independently at random from 0, ---, /-1. Now
from Lemma 2.1 we derive the result.

Similarly, from Lemma 2.2 we derive:

Theorem 3.2 Assume that p is an n-bit
prime (for sufficiently large n) and [ is the
order of group G, such that ged(/, p(p-1)) = 1
and | > p! for some fixed 3+ > 0. Then, for
any ? > 0, there exsits a polynomial time
algorithm which, given the pairs

(P, P), (aP, aP), (bP, bP), (cP, cP)

for some a, b, ¢ € {0, ---, I-1}, makes O("")

calls of the oracle Oy with k = [(1-4/m+?)n}
and computes €(P, P)™ correctly with

probability at least 1-p~ .

Acknowledgement This work was partially
supported by wuniversity IT Research Center
Project.

IV. Conclusion

[5] shows that obtaining certain bits of the
common keys is as hard as computing the
entire key. Our result gives bit security
obtained from TAK-4 protocol. That is, we
show that obtaining certain bits of the TAK-4
common keys is as hard as computing the
entire key.

References

[11S. Al-Riyami and K. G. Paterson,
“Authenticated three party key agreement
protocols from pairings”, Cryptology ePrint
Archive: Report 2002/35.

(21 P. S. L. M. Barreto, H. Y. Kim, B. Lynn
and M. Scott, “Efficient algorithms for
pairing-based cryptosystems”, In Advances
in Cryptology - CRYPTO 2002, LNCS.
Springer-Verlag, 2002.

[3]1 D. Boneh and R. Venkatesan, “Hardness of
computing the most significant bits of
secret keys in Diffie-Hellman and related

- 623 -



2 E 553

[

ol
x
0x
H
HT
fok

rr

24 Vol.13,No.2

schemes”, Proc. Crypto’1996. Lect. Notes in
Comp. Sci, Springer-Verlag, 1109(1996),
129-142.

(4] D. Boneh and MFranklin, “Identity-based
encryption from the Weil pairing”, SIAM ].
Computing, to appear, full version of [11].

[5] S. D. Galbraith, Herbie J. Hopkins, and Igor
E. Shparlinski, “Secure Bilinear Diffie
Hellman Bits”, Cryptology, ePrint Archive:
Report 2002/155.

[6] A. Joux, “A one round protocol for tripartite
Diffie-Hellman”, Proc. ANTS-4, Lect. Notes
in Comp. Sci, Springer-Verlag, Berlin,
1838(2000), 385-393

[1W. -C. W. Li, M. Naslund and 1 E.
Shparlinski, “The hidden number problem
with the trace and bit security of XTR and
LUC”, Proc. Crypto'2002, Lect. Notes in
Comp. Sci., Springer-Verlag, Berlin,
2442(2002), 433-448

[81 R. Lidl and H. Niederreiter, “Finite fields”,
Cambridge University Press, Cambridge,
1997

[91 1 E. Shparlinski , “On the generalized
hidden number problem and bit security of
XTR”, Proc. AAECC-14, Lect. Notes in
Comp. Sci., Springer-Verlag, Berlin,
2227(2001), 268-277

{10] M. 1. Gonzalez Vasco and 1. E. Shparlinski,

“On the security of Diffie-Hellman Bits”,
Proc. Workshop on Cryptography Number
Theory, Singapore 1999, Birkhauser, 2001,
257-268

- 624 -



