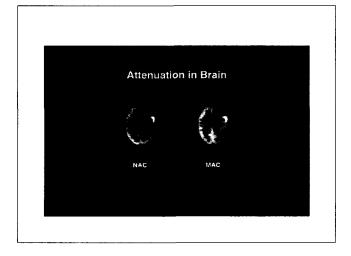
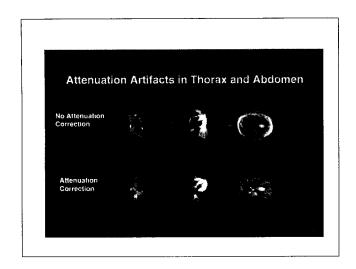

PET/CT 원리와 장점

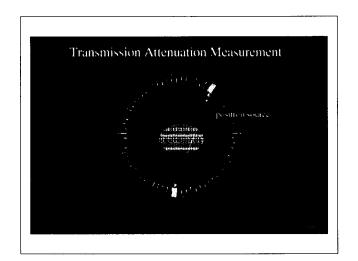
성균관대학교 의과대학 삼성서울병원 핵의학과

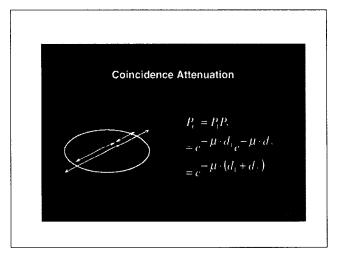
최 용

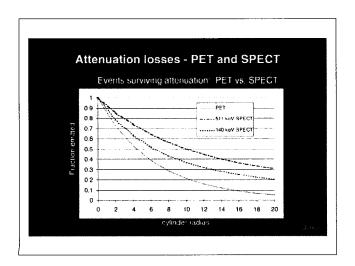

PET (양전자방출단충촬영기)

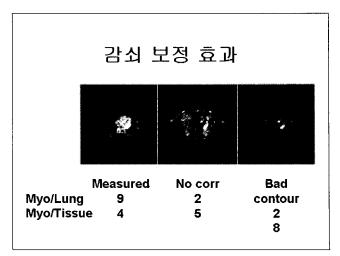

- 생물학적 기능영상 (cf. MRI, CT)
- PET 기기:높은 민감도 감쇠, 산란 등 물리적 영상저하 요인 최소화
- PET 방사성의약품: O-15, N-13, C-11, F-18짧은 반감기높은 비방사능

PET/CT 스케너 개발 동기

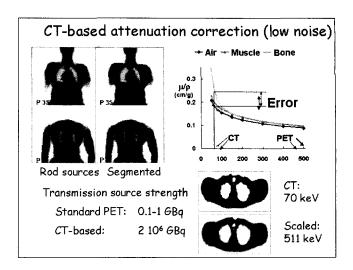

- 고 성능 감쇠 보정 방법 개발 필요
- 고 분해능 형태 영상과 비교 판독 필요






감쇠 보정 방법


- Transmission scan (MAC)
 - Smoothing options
 - T+E correction
 - Segmented attenuation correction (SAC)
- Operator-specified ellipse (CAC)
- Edge-finding in sinogram (autoCAC)
 Operator-specified convex polygon
- CT based attenuation correction



CT Based Attenuation Correction

- Scaling, Segmentation (soft tissue, bone, lung (density varies 30%)),
 Hybrid
- Procedure
 - Reduce CT image to 128 x 128 matrix
 - Transform CT pixel values to 511 keV linear attenuation coefficient
 - Forward project the attenuation image
 - Smooth the sinogram with 8 mm Gaussian filter
 - Apply to emission data

CT Based Attenuation Correction

Scaling:

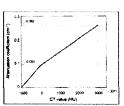
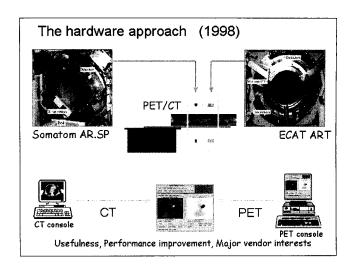
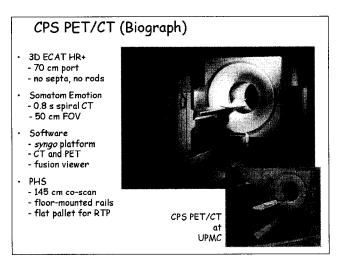


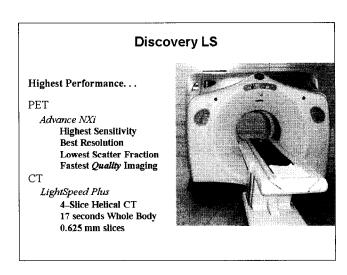
TABLE 1 Mass attenuation coefficients (linear attenuation coefficient/density) in cm²g. Date are from HabbB (ref. 2)

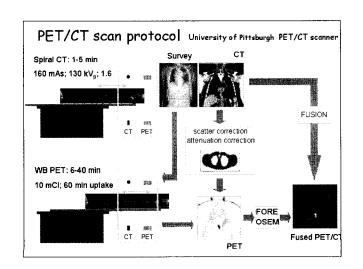
	80 keV			500 keV			Ratio of totals
Material	Photoelec.	Compton	Total	Photoelec.	Compton	Total	80 keV:500 keV
Aiz	0.006	0.161	0.167	< 0.001	0.087	0.087	1.92
Water	0.008	0 178	0.184	<0.001	0.097	0.097	1.90
Muscle	9.006	0.176	0.182	<n on1<="" td=""><td>0.096</td><td>0.096</td><td>1.90</td></n>	0.096	0.096	1.90
Bone	9.034	0.175	0.209	< 0.001	0.033	0.093	2.26
Teflon	*		0.188			0.087	1.93

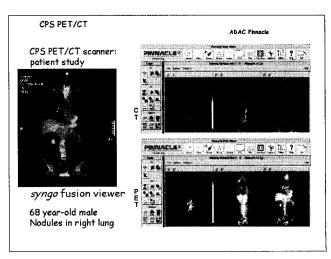
PET/CT 스케너 개발 동기

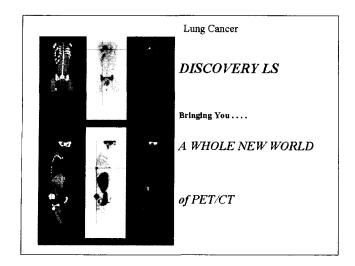

- 고 성능 감쇠 보정 방법 개발 필요
- 고 분해능 형태 영상과 비교 판독 필요


기능영상-해부영상 융합 소프트웨어 방법


- Works well for rigid organ: brain
- Two image sets contain little correlative information
- Differences between two scans: patient movement, patient positioning
- Uncontrollable differences: internal organ movement
- Non-linear image warping: labor intensive


기능영상-해부영상 융합 하드웨어 방법


- ◆ Lang TF, et al. Description of a prototype emission-transmission computed tomography imaging system. JNM 1992
- ◆Blankespoor SC, et al. Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system. IEEE TNS 1996
- Beyer T, et al. A combined PET/CT scanner for clinical oncology. JNM 2000



Challenges in Clinical Imaging

- Arm position: raised or down
- Transverse FOV: CT 50 cm, PET 60 cm
 - Truncation of CT -> accuracy of attenuation correction
- Respiratory motion
 - CT: inhalation, PET: normal breathing
 - CT, PET: shallow breathing

Future Design

- Cohesive system integration: avoid duplication of data acquisition and image reconstruction systems
- Disease management approach
- High sensitivity panel detector: whole-body scan time10 min